2019高三数学理北师大版一轮教师用书:第10章 第4节 随机事件的概率 .doc

上传人:荣*** 文档编号:2611516 上传时间:2020-04-24 格式:DOC 页数:8 大小:209KB
返回 下载 相关 举报
2019高三数学理北师大版一轮教师用书:第10章 第4节 随机事件的概率 .doc_第1页
第1页 / 共8页
2019高三数学理北师大版一轮教师用书:第10章 第4节 随机事件的概率 .doc_第2页
第2页 / 共8页
点击查看更多>>
资源描述

《2019高三数学理北师大版一轮教师用书:第10章 第4节 随机事件的概率 .doc》由会员分享,可在线阅读,更多相关《2019高三数学理北师大版一轮教师用书:第10章 第4节 随机事件的概率 .doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第四节随机事件的概率考纲传真(教师用书独具)1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义及频率与概率的区别.2.了解两个互斥事件的概率加法公式(对应学生用书第175页)基础知识填充1随机事件和确定事件(1)在条件S下,一定会发生的事件,叫作相对于条件S的必然事件(2)在条件S下,一定不会发生的事件,叫作相对于条件S的不可能事件(3)必然事件与不可能事件统称为相对于条件S的确定事件(4)在条件S下可能发生也可能不发生的事件,叫作相对于条件S的随机事件(5)确定事件和随机事件统称为事件,一般用大写字母A,B,C,表示2频率与概率在相同的条件下,大量重复进行同一试验时,随机事件A发生

2、的频率会在某个常数附近摆动,即随机事件A发生的频率具有稳定性这时,我们把这个常数叫作随机事件A的概率,记作P(A)3事件的关系与运算互斥事件:在一个随机试验中,我们把一次试验下不能同时发生的两个事件A与B称作互斥事件事件AB:事件AB发生是指事件A和事件B至少有一个发生对立事件:不会同时发生,并且一定有一个发生的事件是相互对立事件4概率的几个基本性质(1)概率的取值范围:0P(A)1.(2)必然事件的概率P(E)1.(3)不可能事件的概率P(F)0.(4)互斥事件概率的加法公式如果事件A与事件B互斥,则P(AB)P(A)P(B)若事件A与事件互为对立事件,则P(A)1P()知识拓展互斥事件与对

3、立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件基本能力自测1(思考辨析)判断下列结论的正误(正确的打“”,错误的打“”)(1)事件发生的频率与概率是相同的()(2)在大量的重复试验中,概率是频率的稳定值()(3)对立事件一定是互斥事件,互斥事件不一定是对立事件()(4)6张奖券中只有一张有奖,甲、乙先后各抽取一张,则甲中奖的概率小于乙中奖的概率()答案(1)(2)(3)(4)2(教材改编)将一枚硬币向上抛掷10次,其中“

4、正面向上恰有5次”是()A必然事件B随机事件C不可能事件D无法确定B抛掷10次硬币正面向上的次数可能为0,1,2,10,都有可能发生,正面向上5次是随机事件3(2016天津高考)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()ABCDA事件“甲不输”包含“和棋”和“甲获胜”这两个互斥事件,所以甲不输的概率为.4甲:A1,A2是互斥事件;乙:A1,A2是对立事件,那么()A甲是乙的充分不必要条件B甲是乙的必要不充分条件C甲是乙的充要条件D甲既不是乙的充分条件,也不是乙的必要条件B两个事件是对立事件,则它们一定互斥,反之不一定成立5某人进行打靶练习,共射击10次,其中有2

5、次中10环,有3次中9环,有4次中8环,有1次未打中假设此人射击1次,则中靶的概率约为_;中10环的概率约为_0.90.2中靶的频数为9,试验次数为10,所以中靶的频率为0.9,所以此人射击1次,中靶的概率约为0.9,同理,中10环的概率约为0.2.(对应学生用书第175页)随机事件间的关系(1)(2017中山模拟)从1,2,3,4,5这五个数中任取两个数,其中:恰有一个是偶数和恰有一个是奇数;至少有一个是奇数和两个都是奇数;至少有一个是奇数和两个都是偶数;至少有一个是奇数和至少有一个是偶数上述事件中,是对立事件的是()A BCD(2)在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若

6、事件“2张全是移动卡”的概率是,那么概率是的事件是()A至多有一张移动卡B恰有一张移动卡C都不是移动卡D至少有一张移动卡(1)C(2)A(1)从1,2,3,4,5这五个数中任取两个数有3种情况:一奇一偶,两个奇数,两个偶数,其中“至少有一个是奇数”包含一奇一偶或两个奇数这两种情况,它与两个都是偶数是对立事件又中的事件可以同时发生,不是对立事件(2)至多有一张移动卡包含“一张移动卡,一张联通卡”,“2张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件规律方法判断互斥、对立事件的两种方法(1)定义法判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有

7、一个发生,则这两事件为对立事件,对立事件一定是互斥事件.对立事件是互斥事件的充分不必要条件.(2)集合法由各个事件所含的结果组成的集合彼此的交集为空集,则事件互斥.事件A的对立事件所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集.跟踪训练从装有两个白球和两个黄球的口袋中任取2个球,以下给出了四组事件:至少有1个白球与至少有1个黄球;至少有1个黄球与都是黄球;恰有1个白球与恰有1个黄球;恰有1个白球与都是黄球其中互斥而不对立的事件共有()【导学号:79140352】A0组B1组C2组D3组B中“至少有1个白球”与“至少有1个黄球”可以同时发生,如恰有1个白球和1个黄球,中的两个事

8、件不是互斥事件中“至少有1个黄球”说明可以是1个白球和1个黄球或2个黄球,则两个事件不互斥中“恰有1个白球”与“恰有1个黄球”,都是指有1个白球和1个黄球,因此两个事件是同一事件中两事件不能同时发生,也可能都不发生,因此两事件是互斥事件,但不是对立事件,故选B随机事件的频率与概率(2017湖北七市联考)某电子商务公司随机抽取1 000名网络购物者进行调查,这1 000名购物者2015年网上购物金额(单位:万元)均在区间0.3,0.9内,样本分组为 0.3,0.4),0.4,0.5),0.5,0.6),0.6,0.7),0.7,0.8),0.8,0.9,购物金额的频率分布直方图如图1041.图1

9、041电子商务公司决定给购物者发放优惠券,其金额(单位:元)与购物金额关系如下:购物金额分组0.3,0.5)0.5,0.6)0.6,0.8)0.8,0.9(1)求这1 000名购物者获得优惠券金额的平均数;(2)以这1 000名购物者购物金额落在相应区间的频率作为概率,求一个购物者获得优惠券金额不少于150元的概率解(1)购物者的购物金额x与获得优惠券金额y的频率分布如下表:x0.3x0.50.5x0.60.6x0.80.8x0.9y50100150200频率0.40.30.280.02这1 000名购物者获得优惠券金额的平均数为96.(2)由获得优惠券金额y与购物金额x的对应关系,由(1)有

10、P(y150)P(0.6x0.8)0.28,P(y200)P(0.8x0.9)0.02,从而获得优惠券金额不少于150元的概率为P(y150)P(y150)P(y200)0.280.020.3.规律方法1.概率与频率的关系概率是常数,是频率的稳定值,频率是变量,是概率的近似值.有时也用频率来作为随机事件概率的估计值.2.随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.易错警示:概率的定义是求一个事件概率的基本方法.跟踪训练(2018武汉调研)一鲜花店根据一个月(30天)某种鲜花的日销售量与销售天数统计如下,将日销售

11、量落入各组区间的频率视为概率日销售量(枝)05050100100150150200200250销售天数3天5天13天6天3天(1)试求这30天中日销售量低于100枝的概率;(2)若此花店在日销售量低于100枝的时候选择2天作促销活动,求这2天恰好是在日销售量低于50枝时的概率解(1)设月销量为x,则P(0x50),P(50x100),所以P(0x100).(2)日销售量低于100枝共有8天,从中任选两天促销共有n28种情况;日销售量低于50枝共有3天,从中任选两天促销共有m3种情况由古典概型公式得P.互斥事件与对立事件的概率某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖

12、券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:(1)P(A),P(B),P(C);(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率解(1)P(A),P(B),P(C).故事件A,B,C的概率分别为,.(2)1张奖券中奖包含中特等奖、一等奖、二等奖设“1张奖券中奖”这个事件为M,则MABCA,B,C两两互斥,P(M)P(ABC)P(A)P(B)P(C),故1张奖券的中奖概率约为.(3)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件,P(N)1P(AB)1

13、,故1张奖券不中特等奖且不中一等奖的概率为.规律方法复杂事件的概率的两种求法(1)直接求法,将所求事件分解为一些彼此互斥的事件,运用互斥事件的概率求和公式计算.(2)间接求法,先求此事件的对立事件的概率,再用公式P(A)1P()求解(正难则反),特别是“至多”“至少”型题目,用间接求法就比较简便.跟踪训练经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:排队人数012345人及5人以上概率0.10.160.30.30.10.04求:(1)至多2人排队等候的概率;(2)至少3人排队等候的概率. 【导学号:79140353】解记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A、B、C、D、E、F彼此互斥(1)记“至多2人排队等候”为事件G,则GABC,所以P(G)P(ABC)P(A)P(B)P(C)0.10.160.30.56.(2)法一:记“至少3人排队等候”为事件H,则HDEF,所以P(H)P(DEF)P(D)P(E)P(F)0.30.10.040.44.法二:记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)1P(G)0.44.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁