《CA1040轻型货车驱动桥设计(全套图纸).docx》由会员分享,可在线阅读,更多相关《CA1040轻型货车驱动桥设计(全套图纸).docx(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、CA1040轻型货车驱动桥设计(全套图纸) 摘要 驱动桥位于传动系末端,其基本功用是增矩、降速,承受作用于路面和车架或车身之间的作用力。它的性能好坏直接影响整车性能,而对于载重汽车显得尤为重要。轻型货车在商用货运汽车生产中占有很大的比重,为满足目前当前载货汽车的高速度、高效率、高效益的需要,必须要搭配一个高效、可靠的驱动桥。因此设计出结构简单、工作可靠、造价低廉的驱动桥,能大大降低整车生产的总成本,推动汽车经济的发展,并且通过对汽车驱动桥的学习和设计实践,可以更好的学习并掌握现代汽车设计与机械设计的全面知识和技能,所以本课题设计一款结构优良的轻型货车驱动桥具有一定的实际意义。 驱动桥设计应主要
2、保证汽车在给定的条件下具有最佳的动力性和燃油经济性。本设计根据给定的参数,按照传统设计方法并参考同类型车确定汽车总体参数,再确定主减速器、差速器、半轴和桥壳的结构类型,最后进行参数设计并对主减速器主、从动齿轮、半轴齿轮和行星齿轮进行强度以及寿命的校核。驱动桥设计过程中基本保证结构合理,符合实际应用,总成及零部件的设计能尽量满足零件的标准化、部件的通用化和产品的系列化及汽车变型的要求,修理、保养方便,机件工艺性好,制造容易。 关键词:驱动桥;单级主减速器;差速器;半轴;桥壳 ABSTRACT Drive axle is at the end of the power train, and its
3、 basic function is increasing the torque and reducing the speed, bearing the force between the road and the frame or body. Its performance will have a direct impact on automobile performance .Because using the big power engine with the big driving torque satisfied the need of high speed,heavy-loaded
4、,high efficiency,high benefit today heavy truck,must exploiting the high driven efficiency single reduction final drive axle is becoming the heavy truck developing tendency. Because using the big power engine with the big driving torque satisfied the need of high speed, heavy-loaded, high efficiency
5、, high benefit today truck, must exploiting the high driven efficiency single reduction fin al drive axle is becoming the trucks developing tendency. Design a simple, reliable, low cost of the drive axle, can greatly reduce the total cost of vehicle production, and promote the economic development o
6、f automobile and automotive drive axle of the study and design practice, can better learn and to master modern automotive design and mechanical design of a comprehensive knowledge and skills, so the title of the fine structure of the design of a pickup vehicle drive axle has a certain practical sign
7、ificance. According to the design parameters given ,firstly determine the overall vehicle parameters in accordance with the traditional design methods and reference the same vehicle parameters, then identify the main reducer, differential, axle and axle housing structure type, finally design the par
8、ameters of the main gear, the driven gear of the final drive, axle gears and spiral bevel gear and check the strength and life of them. In design process of the drive axle, we should ensure a reasonable structure, practical applications, the design of assembly and parts as much as possible meeting r
9、equirements of the standardization of parts, components and products universality and the serialization and change , convenience of repair and maintenance, good mechanical technology, being easy to manufacture. Key words: Drive axle; Single reduction final drive; Differential; Axle; Drive Axle housi
10、ng 目录 摘要 () Abstract () 第1章绪论 (1) 1.1 论文研究的背景及意义 (1) 1.2 国内外研究现状 (2) 1.2.1 国外研究现状 (2) 1.2.2 国内研究现状 (3) 1.3 设计的主要内容 (4) 第2章驱动桥总体方案设计 (5) 2.1 汽车车桥的种类 (5) 2.2 驱动桥的种类 (5) 2.2.1 非断开式驱动桥 (5) 2.2.2 断开式驱动桥 (6) 2.3 多驱动桥的布置 (6) 2.4 驱动桥的设计要求 (7) 2.5 设计车型参数 (7) 2.6 主减速器方案 (8) 2.6.1 主传动比 i的确定 (8) 2.6.2 主减速器的齿轮类型
11、 (9) 2.6.3 主减速器的减速形式 (10) 2.6.4 主减速器主从动锥齿轮的支撑方案 (11) 2.7 差速器结构方案的确定 (12) 2.8 半轴形式的确定 (13) 2.9 桥壳形式的确定 (14) 2.10 本章小结 (15) 第3章主减速器设计 (16) 3.1 概述 (16) 3.2 主减速器齿轮参数的选择及强度计算 (16) 3.2.1 主减速器齿轮计算载荷的确定 (16) 3.2.2 锥齿轮主要参数的选择 (17) 3.2.3 主减速器齿轮材料的选择 (21) 3.2.4 主减速器齿轮强度的计算 (21) 3.3 主减速器轴承的选择 (25) 3.4 主减速器的润滑 (
12、30) 3.5 本章小结 (30) 第4章差速器设计 (31) 4.1概述 (31) 4.2 对称式行星齿轮差速器工作原理 (31) 4.3 对称式行星齿轮差速器的结构 (32) 4.4 对称式行星圆锥齿轮设计 (32) 4.4.1 差速器齿轮的材料 (32) 4.4.2 差速器齿轮的基本参数选择 (33) 4.4.3 差速器齿轮几何尺寸计算 (35) 4.4.4 差速器齿轮强度计算 (36) 4.5 本章小结 (38) 第5章半轴设计 (39) 5.1 概述 (39) 5.2 半轴的设计 (39) 5.2.1半轴材料与热处理 (39) 5.2.2全浮式半轴的计算载荷的确定 (39) 5.2.
13、3全浮半轴杆部直径的初选 (41) 5.2.4全浮半轴强度计算 (41) 5.2.5全浮式半轴花键强度计算 (42) 5.3 本章小结 (43) 第6章驱动桥桥壳的设计 (44) 6.1 概述 (44) 6.2桥壳的受力分析及强度计算 (44) 6.2.1桥壳的静弯曲应力计算 (44) 6.2.2在不平路面冲击载荷作用下桥壳的强度计算 (46) 6.2.3汽车以最大牵引力行驶时的桥壳的强度计算 (46) 6.2.4汽车紧急制动时的桥壳强度计算 (48) 6.2.5 汽车受最大侧向力时桥壳的强度计算 (50) 6.3 本章小结 (53) 结论 (55) 参考文献 (56) 致谢 (58) 第1章
14、绪论 1.1 论文研究的背景及意义 近年来,我国汽车行业迅猛发展,2022年我国汽车产销分别完1379.10万辆和1364.48万辆,同比分别增长48%和46%。在各大细分市场中,增长最快为微型货车,2022年共销售50.57万辆,同比增长73%,对于商用车销售增长贡献度为29%。2022年,在汽车下乡政策的推动下,轻型货车市场仍将保持增长,国内企业为了获得更大的投资收益,也将在生产规模和产品质量上不断升级。 随着汽车行业的迅猛发展,作为汽车关键零部件之一的汽车驱动桥也需得到相应的提升,为满足市场多样化及用户个性化的需求,驱动桥再也不能停留在载货车单一的、低档次的技术水平上,随着新材料、新能源
15、、电子测控及信息技术的迅猛发展,应用这些高新科技武装和改造传统的汽车工业,以新型的驱动桥大幅度地提高车辆的安全性、舒适性和经济性,为广大消费者提供节能型和环保型的汽车产品。各生产厂家在研发和生产过程中基本上形成了专业化、系列化、批量化的局面,汽车驱动桥是汽车的重要总成,承载着汽车车架及承载式车身经悬架给予的铅垂力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。汽车驱动桥结构型式和设计参数除对汽车的可靠性与耐久性有重要影响外,也对汽车的行驶性能如动力性、经济性、平顺性、通过性、机动性和操动稳定性等有直接影响1。 汽车驱动桥是汽车的重大总成,承载着
16、汽车的满载簧荷重及地面经车轮、车架及承载式车身经悬架给予的铅垂力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。汽车驱动桥结构型式和设计参数除对汽车的可靠性与耐久性有重要影响外,也对汽车的行驶性能如动力性、经济性、平顺性、通过性、机动性和操动稳定性等有直接影响。另外,汽车驱动桥在汽车的各种总成中也是涵盖机械零件、部件、分总成等的品种最多的大总成。例如,驱动桥包含主减速器、差速器、驱动车轮的传动装置(半轴及轮边减速器)、桥壳和各种齿轮。由上述可见,汽车驱动桥设计涉及的机械零部件及元件的品种极为广泛,对这些零部件、元件及总成的制造也几乎要设计到所有
17、的现代机械制造工艺。因此,通过对汽车驱动桥的学习和设计实践,可以更好的学习并掌握现代汽车设计与机械设计的 全面知识和技能。 汽车驱动桥设计涉及的机械零部件及元件的品种极为广泛,对这些零部件、元件及总成的制造也几乎要设计到所有的现代机械制造工艺,设计出结构简单、工作可靠、造价低廉的驱动桥,能大大降低整车生产的总成本,推动汽车经济的发展,并且通过对汽车驱动桥的学习和设计实践,可以更好的学习并掌握现代汽车设计与机械设计的全面知识和技能,所以本题设计一款结构优良的微型货车驱动桥具有一定的实际意义。而且由于我国的汽车行业发展日趋成熟,各汽车企业的竞争愈演愈烈,而提高其燃油经济性也是各商用车生产商来提高其
18、产品市场竞争力的一个法宝。这就必须在发动机的动力输出之后,在从离合器变速器万向传动装置驱动桥这些动力输送环节中 寻找减少能量在传递的过程中的损失的途径。因此,在发动机相同的情况下,采用性能优良且与发动机匹配性比较好的驱动桥就成了有效节油的措施之一。所以设计新型的驱动桥成为了新的课题。 驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能,而对于载货汽车显得尤为重要。当采用大功率发动机输出大的转矩以满足目前载货汽车的快速、重载的高效率、高效益的需要时,必须要搭配一个高效、可靠的驱动桥。所以采用传动效率高的单级减速驱动桥已成为未来汽车的发展方向。对于载货汽车来说,要传递的转矩较乘用车和客车,
19、以及商用车都要大得多,以便能够以较低的成本运输较多的货物,所以选择功率较大的发动机,这就对传动系统有较高的要求,而驱动桥在传动系统中起着举足轻重的作用。 本课题就选取典型的轻型货车解放CA1040轻型货车来进行驱动桥设计。 1.2 国内外研究现状 1.2.1 国外研究现状 国外微型货车驱动桥开发技术已经非常成熟,建立新的驱动桥开发模式成为国内外驱动桥开发团队的新目标。驱动桥设计新方法的应用使其开发周期缩短,成本降低,可靠性增加。目前国内最新的开发模式和驱动桥技术包括: (1)并行工程开发模式 并行工程开发模式是对在一定范围内的不同功能或相同功能的不同性能,不同规格的机械产片进行功能分析的基础上
20、,划分并设计出一系列的功能模块,然后通过模块的选择和组合构成不同产品的一种设计方法。该方法能够缩短新产品的设计时间,降低成本,提升质量,提高市场竞争力,以DANA为代表的意大利企业多以采用了这类设计方法。该方法的显著优点是:减少设计及工装制造的投入,减少了零件种类,提高规模生产程度,降低制造费用,提高市场响应速度等。 (2)模态分析 模态分析是对工程结构惊醒振动分析研究的最先进的现代方法和手段之一。它可以定义为对结构动态特性的解析分析(有限元分析)和实验分析(实验模态分析),其结构动态特性用模态参数来表征。模态分析技术的特点与优点是在对系统做动力学分析时,用模态坐标代替物理学坐标,从而可以大大
21、压缩系统分析的自由度数目,分析精度得到提高。驱动桥的振动特性不但直接影响其本身强度,而且对整车的舒适性和平顺性有着至关重要的影响。因此,对驱动桥进行模态分析,掌握和改善其振动特性,是设计中的一个重要方面。 (3)驱动桥壳的有限元分析方法 有限元法不需要对所分析的结构进行严格的简化,既可以考虑各种计算要求和条件,也可以计算各种工况,而且计算精度高。有限元法将具有无限个自由度的连续体离散为有限个自由度的单元集合体,是问题简化为适合数值解法的问题,配以计算机就可以解决许多解析法无法解决的复杂工程问题。目前,有限元法已经成为求解数学,物理,力学以及工程问题的一种有效的数值方法,也为驱动桥壳设计提供了强
22、有力的工具。 (4)高性能制动器技术 在发达国家驱动桥产品中, 已出现了自循环冷却功能的湿式制动器桥、带散热风送的盘式制动器桥、适于ABS的蹄、鼓式和盘式制动器桥、带自动补偿间隙的盘式制动器等配置高性能制动器桥,同时制动器的布置位置也出现了从桥臂处分别向桥包总成和轮边端部转移的趋势。前种处理方式易于散热, 后种处理方式为了降低成本,甚至有厂商把制动器的壳体与桥壳铸为一体,既易于散热,又利于降低材料成本,但这对铸造技术、铸造精度和加工精度都提出了极高的要求。 (5)电子智能控制技术进入驱动桥产品 电子智能控制技术已经在汽车业得到了快速发展,如现代汽车上使用的ABS(制动防抱死控制)、ASR(驱动
23、力控制系统)等系统2。 1.2.2 国内研究现状 目前我国正在大力发展汽车产业,采用后轮驱动汽车的平衡性和操作性都将会有很大的提高。后轮驱动的汽车加速时,牵引力将不会由前轮发出,所以在加速转弯时,司机就会感到有更大的横向握持力,操作性能变好。维修费用低也是后轮驱动的一个优点,尽管由于构造和车型的不同,这种费用将会有很大的差别。如果变速器出了故障,对于后轮驱动的汽车就不需要对差速器进行维修,但是对于前轮驱动的汽车来说也许就有这个必要了,因为这两个部件是做在一起的。所以后轮驱动必然会使得乘车 更加安全、舒适,从而带来可观的经济效益。目前国内研究的重点在于:从桥壳的制造技术上寻求制造工艺先进、制造效
24、率高、成本低的方法;从齿轮减速形式上将传统的中央单极减速器发展到现在的中央及轮边双级减速或双级主减速器结构;从齿轮的加工形式上车桥内部的的主从动齿轮、行星齿轮及圆柱齿轮逐渐采用精磨加工,以满足汽车高速行驶要求及法规对于噪声的控制要求。 总之,我国汽车驱动桥的研究设计与世界先进驱动桥设计技术还有一定的差距,我国车桥制造业虽然有一些成果,但都是在引进国外技术、纺制、再加上自己改进的基础上了取得的。个别比较有实力的企业,虽有自己独立的研发机构但都处于发展的初期。在科技迅速发展的推动下,高新技术在汽车领域的应用和推广,各种国外汽车新技术的引进,研究团队自身研发能力的提高,我国的驱动桥设计和制造会逐渐发
25、展起来,并跟上世界先进的汽车零部件设计制造技术水平3。 1.3 设计的主要内容 设计出适合解放CA6140轻型货车的驱动桥,优化设计方案。本次设计的主要内容如下: 1、主减速器的结构设计、基本参数选择及设计计算; 2、差速器齿轮的基本参数的选择、几何及强度计算; 3、驱动半轴的结构设计及强度计算; 4、驱动桥壳的结构设计及受力分析与强度计算。 5、驱动桥装配图A0图纸一张,零件图折合A0图纸两张。 提高汽车的技术水平,使其使用性能更好,更安全,更可靠,更经济,更舒适,更机动,更方便,动力性更好,污染更少。改善汽车的经济效果,调整汽车在产品系列中的档次,以便改善其市场竞争地位并获得更大的经济效益
26、。 第2章驱动桥总体方案设计 2.1 汽车车桥的种类 汽车的驱动桥与从动桥统称为车桥,车桥通过悬架与车架(或承载式车身)相连,它的两端安装车轮,其功用是传递车架(或承载式车身)于车轮之间各方向的作用力及其力矩。 根据悬架结构的不同,车桥分为整体式和断开式两种。当采用非独立悬架时,车桥中部是刚性的实心或空心梁,这种车桥即为整体式车桥;断开式车桥为活动关节式结构,与独立悬架配用。在绝大多数的载货汽车和少数轿车上,采用的是整体式非断开式。断开式驱动桥两侧车轮可独立相对于车厢上下摆动。 根据车桥上车轮的作用,车桥又可分为转向桥、驱动桥、转向驱动桥和支持桥四种类型。其中,转向桥和支持桥都属于从动桥,一般
27、货车多以前桥为转向桥,而后桥或中后两桥为驱动桥4-5。 2.2 驱动桥的种类 驱动桥位于传动系末端,其基本功用首先是增扭、降速,改变转矩的传递方向,即增大由传动轴或直接从变速器传来的转矩,并合理的分配给左、右驱动车轮。其次,驱动桥还要承受作用于路面和车架或车厢之间的垂直力、纵向力和横向力,以及制动力矩和反作用力矩。驱动桥分为断开式和非断开式两种。 2.2.1 非断开式驱动桥 普通非断开式驱动桥,由于结构简单、造价低廉、工作可靠,广泛用在各种载货汽车、客车和公共汽车上,在多数的越野汽车和部分轿车上也采用这种结构。他们的具体结构、特别是桥壳结构虽然各不相同,但是有一个共同特点,即桥壳是一根支承在左
28、右驱动车轮上的刚性空心梁,齿轮及半轴等传动部件安装在其中。这时整个驱动桥、驱动车轮及部分传动轴均属于簧下质量,汽车簧下质量较大,这是它的一个缺点。 驱动桥的轮廓尺寸主要取决于主减速器的型式。在汽车轮胎尺寸和驱动桥下的最小离地间隙已经确定的情况下,也就限定了主减速器从动齿轮直径的尺寸。在给定速比的条件下,如果单级主减速器不能满足离地间隙要求,可该用双级结构。在双级主减速器中,通常把两级减速器齿轮放在一个主减速器壳体内,也可以将第二级减速齿轮作为轮边减速器。对于轮边减速器:越野汽车为了提高离地间隙,可以将一对圆柱 齿轮构成的轮边减速器的主动齿轮置于其从动齿轮的垂直上方;公共汽车为了降低汽车的质心高
29、度和车厢地板高度,以提高稳定性和乘客上下车的方便,可将轮边减速器的主动齿轮置于其从动齿轮的垂直下方;有些双层公共汽车为了进一步降低车厢地板高度,在采用圆柱齿轮轮边减速器的同时,将主减速器及差速器总成也移到一个驱动车轮的旁边。 在少数具有高速发动机的大型公共汽车、多桥驱动汽车和超重型载货汽车上,有时采用蜗轮式主减速器,它不仅具有在质量小、尺寸紧凑的情况下可以得到大的传动比以及工作平滑无声的优点,而且对汽车的总体布置很方便4。 2.2.2 断开式驱动桥 断开式驱动桥区别于非断开式驱动桥的明显特点在于前者没有一个连接左右驱动车轮的刚性整体外壳或梁。断开式驱动桥的桥壳是分段的,并且彼此之间可以做相对运
30、动,所以这种桥称为断开式的。另外,它又总是与独立悬挂相匹配,故又称为独立悬挂驱动桥。这种桥的中段,主减速器及差速器等是悬置在车架横粱或车厢底板上,或与脊梁式车架相联。主减速器、差速器与传动轴及一部分驱动车轮传动装置的质量均为簧上质量。两侧的驱动车轮由于采用独立悬挂则可以彼此致立地相对于车架或车厢作上下摆动,相应地就要求驱动车轮的传动装置及其外壳或套管作相应摆动。 汽车悬挂总成的类型及其弹性元件与减振装置的工作特性是决定汽车行驶平顺性的主要因素,而汽车簧下部分质量的大小,对其平顺性也有显著的影响。断开式驱动桥的簧下质量较小,又与独立悬挂相配合,致使驱动车轮与地面的接触情况及对各种地形的适应性比较
31、好,由此可大大地减小汽车在不平路面上行驶时的振动和车厢倾斜,提高汽车的行驶平顺性和平均行驶速度,减小车轮和车桥上的动载荷及零件的损坏,提高其可靠性及使用寿命。但是,由于断开式驱动桥及与其相配的独立悬挂的结构复杂,故这种结构主要见于对行驶平顺性要求较高的一部分轿车及一些越野汽车上,且后者多属于轻型以下的越野汽车或多桥驱动的重型越野汽车。 由于非断开式驱动桥结构简单、造价低廉、工作可靠,查阅资料,参照国内相关轻型货车的设计,最后本课题选用非断开式驱动桥,其结构如图2.1所示。 2.3 多驱动桥的布置 为了提高装载量和通过性,有些重型汽车及全部中型以上的越野汽车都是采用多桥驱动,常采用的有4x4,6x6,8x8等驱动型式。在多桥驱动的情况下,动力经分动器传给各驱动桥的方式有两种。相应这两种动力传递方式,多桥驱动汽车各驱动桥的布置型式分为非贯通式与贯通式。前者为了把动力经分动器传给各驱动桥,需分别由分动器经各驱动桥自己专用的传动轴传递动力,这样不仅使传动轴的数量增多,且造