《初二数学上册知识点归纳.docx》由会员分享,可在线阅读,更多相关《初二数学上册知识点归纳.docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -江苏苏科版数学八年级学问点归纳上册2021.1.1可编辑 word 文档可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 1 页,共 11 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -第一章轴对称图形一、轴对称与轴对称图形的区分和联系区分: 轴对称是指两个图形沿某直线对折能够完全重合,是两个图形之间的一种关系,而轴对称图形是两部
2、分能完全重合的一个图形。联系: 两者都有完全重合的特点,都有对称轴,都有对称点。二、轴对称的性质1、定义垂直并且平分一条线段的直线,叫做这条线段的垂直平分线 。2、 把一个图形沿着一条直线折叠, 假如它能够与另一个图形重合, 那么称这两个图形关于这条直线对称, 也称这两个图形成轴对称, 这条直线叫做对称轴, 两个图形中的对应点叫做对称点。3、 把一个图形沿着一条某直线折叠,假如直线两旁的部分能够相互重合,那么称这个图形是轴对称图形,这条直线就是对称轴。4、 成轴对称的两个图形全等。假如两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。三、线段、角的轴对称性1、 线段是轴对称图形,线段的垂直
3、平分线是它的对称轴。线段的垂直平分线上的点到线段两端的距离相等。2、 到线段两端距离相等的点,在这条线段的垂直平分线上。线段的垂直平分线是到线段两端距离相等的点的集合。3、 角是轴对称图形,角平分线所在直线是它的对称轴。角平分线上的点到角的两边距离相等。角的内部到角的两边距离相等的点,在这个角的平分线上。四、等腰三角形的轴对称性1、等腰三角形是轴对称图形,顶角平分线所在直线是它的对称轴。2、等腰三角形的两个底角相等(简称“等边对等角”)。等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。3、假如一个三角形有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”)。4、直角三角形斜边
4、上的中线等于斜边的一半。5、直角三角形中30角所对的直角边是斜边的一半。6、三边相等的三角形叫做等边三角形或正三角形。等边三角形是轴对称图形,并且有3 条对称轴。等边三角形的每个角都等于60。7、三条边都相等的三角形是等边三角形。有两个角是60的三角形是等边三角形。有一个角是60的等腰三角形是等边三角形。五、等腰梯形的轴对称性1、定义梯形中,平行的一组对边称为底,不平行的一组对边称为腰。两腰相等的梯形叫做 等腰梯形 。可编辑 word 文档可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 2 页,共 11 页 - - - - - -
5、- - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -2、等腰梯形是轴对称图形,过两底中点的直线是它的对称轴。等腰梯形在同一底上的两个角相等。3、等腰梯形的对角线相等。对角线相等的梯形是等腰梯形。4、在同一底上的两个角相等的梯形是等腰梯形。第一章小结轴对称轴对称性质轴对称图形可编辑资料 - - - 欢迎下载精品名师归纳总结线段线段的垂直平分线角线到角角段线平的的段分内垂两线部直端上到平距的角分离点的线相到两上等角边的的的距点点两离到,边相线在距等段这离的两条相点端线等,的距离相等段上的垂直平在个的分线分线上上角平
6、分线这角平等腰三角形等边三角形等腰梯形等等等直腰边角角三对对三角等等角形角边形的斜顶边角上平的分中线线、等底于边斜上边的的中一线半、底边上的高互相重合等等在腰腰同梯梯一形形底的在上对同的角一两线底个相上角等的相两个等的角相梯形等是等腰梯形可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑 word 文档可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 3 页,共 11 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -
7、其次章勾股定理与平方根一、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。我国古代把直角三角形中,较短的直角边叫做“勾”,较长的直角边叫做“股” ,斜边叫做“弦”。结论为: “勾三股四弦五” 。 2+2=2 b2221、 假如三角形的三边长a、b、c 满意 + = ,那么这个三角形是直角三角形。2222、 满意 + = 的 3 个正整数 a、b、c 称为勾股数。(例如, 3、4、5 是一组勾股数)。利用勾股数可以构造直角三角形。二、平方根1、定义一般的,假如一个数的平方等于,那么这个数叫做的平方根 ,也称为二次方根。也就是说,假如2,那么就叫做的平方根。2、一个正数有2 个平方根,
8、它们互为相反数。0 只有一个平方根,它是0 本身。负数没有平方根。3、 求一个数的平方根的运算,叫做开平方 。4、 正数有两个平方根,其中正的平方根,也叫做的算术平方根。例如: 4 的平方根是,其中2 叫做 4 的算术平方根,记作。 2 的平方根是,其中叫做 2 的算术平方根。0 只有一个平方根,0 的平方根也叫做0 的算术平方根,即=0三、立方根1、定义一般的,假如一个数的立方等于a,那么这个数叫做a 的立方根 ,也称为三次方根。也就是说, 假如 3 =a,那么就叫做a 的立方根, 数 a 的立方根记作 “”,读作“三次根号 a”。 2、求一个数a 的立方根的运算,叫做开立方 。3、正数的立
9、方根是正数,负数的立方根是负数,0 的立方根是0。四、实数1、无限不循环小数称为无理数 。2、有理数和无理数统称为实数 。3、每一个实数都可以用数轴上的一个点来表示,反之, 数轴上的每一个点都表示一个实数,实数与数轴上的点是一一对应的。五、近似数与有效数字可编辑 word 文档可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 4 页,共 11 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -1、例如,本册数学课本约有10
10、0 千字,这里100 是一个 近似数 。2、对一个近似数,从左边第一个不是0 的数字起,到末位数字止,全部的数字都称为这个近似数的 有效数字 。第三章中心对称图形(一)一、图形的旋转1、定义在平面内,将一个图形绕一个定点转动肯定的角度,这样的图形运动称为图形的 旋转 。这个定点称为旋转中心,旋转的角度称为旋转角。图形的旋转不转变图形的外形、大小。2、结论旋转前、后的图形全等,对应点到旋转中心的距离相等,每一对对应点与旋转中心的连线所成的角彼此相等。二、 中心对称与中心对称图形1、定义把一个图形围着某一点旋转180,假如它能够与另一个图形重合,那么称 这两个图形关于这点对称,也称这两个图形成中心
11、对称 。这个点叫做 对称中心 。两个图形中的对应点叫做对称点。2、一个图形围着某一点旋转180是一种特殊的旋转,因此,成中心对称的两个图形具有图形旋转的一切性质。3、成中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。4、把一个平面图形绕某一点旋转180,假如旋转后的图形能够和原先的图形相互重合,那么这个图形叫做中心对称图形。这个点就是它的对称中心。三、平行四边形1、定义两组对边分别平行的四边形叫做平行四边形 。平行四边形是中心对称图形,对角线的交点是它的对称中心。2、性质平行四边形的对边相等。平行四边形的对角相等。平行四边形的对角线相互平分。3、判定依据一组对边平行并且相等的
12、四边形是平行四边形。两条对角线相互平分的四边形是平行四边形。两组对边分别相等的四边形是平行四边形。两组对边分别平行的四边形是平行四边形。两组对角分别相等的四边形是平行四边形。四、矩形、菱形、正方形(一)矩形1、定义有一个角是直角的平行四边形叫做矩形 。矩形通常也叫做长方形。矩形是特殊的平行四边形,它具有平行四边形的一切性质。2、性质矩形的对角线相等且相互平分,四个角都是直角。3、判定依据有3 个角是直角的四边形是矩形。对角线相等的平行四边形是矩形。可编辑 word 文档可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 5 页,共 11
13、 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -一个角是直角的平行四边形是矩形。(二)菱形1、定义有一组邻边相等的平行四边形叫做菱形 。菱形是特殊的平行四边形,它具有平行四边形的一切性质。2、 性质菱形的四条边都相等。菱形的对角线相互垂直且平分,并且每一条对角线平分一组对角。3、 判定依据四边都相等的四边形是菱形。对角线相互垂直的平行四边形是菱形。一组邻边相等的平行四边形是菱形。(三)正方形1、定义有一组邻边相等并且有一个角是直角的平行四边形叫做正方形 。正方形不仅是特殊的平行
14、四边形,而且是有一组邻边相等的特殊的矩形,也是有一个角是直角的特殊的菱形。2、关系:有一组矩形邻边相等正方形有一个菱形角是直角平行四边形、矩形、菱形、正方形的关系:平行四边形矩形正菱形方形正方形具有矩形的性质,同时又具有菱形的性质。五、三角形、梯形的中位线1、连接三角形两边中点的线段叫做三角形的中位线。三角形的中位线平行于第三边,并且等于它的一半。可编辑 word 文档可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 6 页,共 11 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料wor
15、d 精心总结归纳 - - - - - - - - - - - -2、连接梯形两腰中点的线段叫做梯形的中位线。梯形的中位线平行于两底,并且等于两底和的一半。图形的性质平行四边形矩形菱形正方形对边平行且相等.四边都相等.四个角都是直角对角线相互平分.对角线相互垂直.对角线相等.第四章数量、位置的变化一、数量的变化(略)二、位置的变化(略)三、平面直角坐标系1、平面上相互垂直且有公共原点的两条数轴构成平面直角坐标系。2、水平方向的数轴称为x 轴或横轴, 竖直方向的数轴称为y 轴或纵轴, 它们统称为坐标轴。公共原点O称为坐标原点。 3、两条坐标轴将平面分成四个象限,坐标轴上的点不属于任何象限。平面内的
16、点就与一对有序实数 点的坐标 建立了一一对应关系。逆时针次序分别记为第一、二、三、四象限。4、点 P( a,b)关于 x 轴对称的点为(a, -b ),关于 y 轴对称的点为(-a , b),关于原点对称的点位( -a , -b )。 x 轴上的点为( x , 0),y 轴上的点为(0, y)。例图:在平面直角坐标系中,有序实数对(a, b)所描述的点P 的位置: ybP( a, b)过 x 轴上表示实数 a 的点画 x 轴的垂线,过 y 轴上表示实数 b 的点画这两条垂线的交点,即为点P。xOa在图中,点P 的坐标为( a, b),其中 a 称为点 P 的横坐标, b 称为点 P 的纵坐标,
17、横坐标写在纵坐标的前面。5、在平面直角坐标系中,一对有序实数可以确定一个点的位置。反之,任意一点的位置都可以用一对有序实数来表示。这样的有序实数对叫做点的坐标 。6、点的坐标通常与表示该点的大写字母写在一起,如P( a,b), Q(m, n)。可编辑 word 文档可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 7 页,共 11 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -第五章一次函数一、函数1、定义一般的,假如
18、在一个变化的过程中有两个变量 x 和 y ,并且对于变量 x 的每一个值,变量 y 都有唯独的值与它对应,那么 y 就称为是 x 的函数 。其中, x 是自变量, y 是因变量。(补充: 在一变化过程中,数值发生变化的量叫变量。始终不变的量叫常量。常量与变量均不带单位。)例如: 水库蓄水量是水位的函数(蓄水量随着水位的上升或下降而增大或减小) 。圆面积2是半径的函数(S=)等。2、表示两个变量之间的关系可以用3 种方法:表格、图形和数学式子。表示两个变量之间关系的式子通常称为函数关系式 。例如:汽车油箱内存油40L,每行驶 100km 耗油 10L, 求行驶过程中油箱内剩余油量Q升与行驶路程S
19、 公里的函数关系式。解: Q= 40 -10, 即 Q= 40 -在一个变化过程中,自变量的取值通常有肯定的范畴。本例题中的自变量取值范畴是0 S400(存油 40L,每 10L 油可以行驶100km, 即行驶的最大路程S=100= 400 公里)3、在直角坐标系中,假如描出以自变量的值为横坐标、相应的函数值为纵坐标的点,那么全部这样的点组成的图形叫做这个函数的图像。二、一次函数定义一般的,假如两个变量x 和 y 之间的函数关系,可以表示为y=kx+b ( k、 b 为常数,且k 0)的形式,那么称y 是 x 的一次函数 。特殊的,当b=0 时, y 叫做 x 的正比例函数。例 1: 一盘蚊香
20、长105cm,点燃时每小时缩短10cm。( 1)写出蚊香点燃后的长度y( cm)与蚊香燃烧时间t ( h)之间的函数关系式。( 2)该盘蚊香可以使用多长时间?解:( 1) y=105-10t( 2)蚊香燃尽时,即y=0,由 1 得, 105-10t=0 ,即 t=10.5答:该盘蚊香可使用10.5h 。例 2: 在弹性限度内,弹簧伸长的长度与所挂物体的质量成正比。( 1) 已知一根弹簧自身的长度为cm,且所挂物体的质量每增加1g,弹簧长度增加 kcm,试写出弹簧长度y ( cm)与所挂物体质量x( g)之间的函数关系式。( 2)已知这根弹簧挂10g 物体时的长度为11cm,挂 30g 物体时的
21、长度为15cm,试确 定弹簧长度y ( cm)与所挂物体质量x(g)之间的函数关系式。解:( 1)依据题意,得函数关系式为:y=kx+b( 2)由 x=10 时, y=11 ,得11=10k+b由 x=30 时, y=15,得可编辑 word 文档可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 8 页,共 11 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -15=30k+b解方程组得,所求函数关系式为: y=0.2x
22、+9三、 一次函数的图象1、特点一次函数y=kx+b (k 、b 为常数,且k 0)的图象是一条直线。当 k 0,那么 y 随 x 的增大而增大。当 k 0,那么 y 随 x 的增大而减小。2、一次函数y=kx+b (k 、b 为常数,且k 0)的图象与k 、b 的关系:k 0, b0 时,直线经过一、二、三象限。k 0, b0 时,直线经过一、三、四象限。k 0, b0 时,直线经过一、二、四象限。k 0, b0 时,直线经过二、三、四象限。3、一般的,正比例函数y=kx 的图象是经过原点的一条直线,一次函数y=kx+b ( k、b 为常数,且 k 0)的图象是由正比例函数y=kx ( k0
23、)的图象沿y 轴向上( b0)或向下( b0)平移 | b| 个单位长度得到的一条直线。4、画一次函数的图象时,只要确定两个点的位置,过这两点画直线就可以了。例题:在平面直角坐标系中,画一次函数y=-3x+3 的图象。解:把 x=0 代入 y=-3x+3 ,得3 y y=3把 y=0 代入 y=-3x+3 ,得x=1过点( 0, 3)、(1, 0)画一条直线,-2 -1o12x这条直线就是函数y=-3x+3 的图象。-1y=-3x+3-25、由函数解析式画函数图象,一般按以下步骤进行:列表、描点、连线。描的点越多,图象越精确。有时不能把全部的点都描出,就用光滑的曲线连结所画的点,从而得到函数的
24、近似的图象。6、两个一次函数的关系:当 k 相等, b 不相等时,这两条直线平行。 当 k 不相等的时,这两条直线相交。7、在求一个算式时,如已知所求结果具有某种形式,就可引入一些待确定的系数来表示结果,建立起给定算式和结果之间的恒等式,再依据条件对恒等式变形,确定待定的系数。这种方法称为 待定系数法 。8、一次函数的一般形式为y=kx+b(k 0),依据题中所给的条件,通过待定系数法,确定 k 和 b 值,即可求出一次函数的关系式。9、在解决一些实际问题时,确定一次函数关系式的关键是找到两个变量之间的等量关系,运用一次函数的图象和性质可以把一些实际问题转化成函数问题,列出相应的函数关系式。运
25、用一次函数解决问题时,留意函数的自变量的取值范畴要符合实际情形。例题:洗衣机在洗涤衣服时,经受了进水、清洗、排水、脱水四个连续的过程,其中进水、清洗、排水时洗衣机中的水量y( L)与时间x( min)之间的关系如折线图所示:y/L可编辑 word 文档可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 9 页,共 11 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -40Ox/min415依据图象解答以下问题:洗衣机的进水
26、时间是多少分钟?清洗时洗衣机中的水量是多少升?已知洗衣机的排水速度为每分钟19L。求排水时y 与 x 之间的关系式。假如排水时间为 2 分钟,求排水终止时洗衣机中剩下的水量。分析:此类问题是常见的生活问题,解决此题的关键是通过阅读和信息的处理进行分析,看清、读懂题意及题目中的数量关系。解:由图象可知:洗衣机的进水时间是4min ,清洗时洗衣机中的水量是40L。由于图象经过 ( 15,40),排水速度为19L, 设 y 与 x 之间的函数关系式为y=-19x+b 。 40=-19 15+b, b=325,即 y=-19x+325 。排水时间2min,排水终止时x=2+15=17。此时,洗衣机的水
27、量为: -19 17+325=2L点评:此题主要考查了数形结合、待定系数、方程等数学思想方法,要留意身边的数学问题,要善于观看,勤于摸索,做到把生活实际与数学问题紧密的结合在一起。10、一次函数解决实际问题的步骤:仔细分析实际问题中两个变量之间的关系。如具有一次函数关系,就建立一次函数关系式。利用一次函数的性质解题。四、 二元一次方程组的图象解法1、 定义用两个一次函数图象解二元一次方程组的方法称为二元一次方程组的图象解法。2、 用图象法解二元一次方程组的步骤:转化形式。 画出两个函数图象。写出方程组的解。3、 一次函数 y=kx+b 的图象上任意一点的坐标都是二元一次方程kx-y+b=0 的
28、一个解。 以二元一次方程kx-y+b=0的解为坐标的点都在一次函数y=kx+b 的图象上。4、 将二元一次方程组转化为两个一次函数,假如两个一次函数的图象有一个交点,那么这个交点的坐标就是这个二元一次方程组的解。y例题:利用一次函数的图象解y=-x+2y=2x-3二元一次方程组可编辑资料 - - - 欢迎下载精品名师归纳总结解:由 x+2y=4,得P (2 , 1)可编辑资料 - - - 欢迎下载精品名师归纳总结y=-x+21x由 2x-y=3 ,得y=2x-3如图,在同始终角坐标系中,画出一次函数y=-x+2 和 y=2x-3 的图象,它们的交点为P2, 1 。可编辑 word 文档可编辑资
29、料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 10 页,共 11 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -所以原二元一次方程组的解为此文档可自行编辑修改,如有侵权请告知删除,感谢您的支持,我们会努力把内容做得更好可编辑 word 文档可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 11 页,共 11 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载