资源描述
.-
随机事件(第一课时)
25.1.2 概率的意义
教学目标:
〈一〉知识与技能
1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值
2.在具体情境中了解概率的意义
〈二〉教学思考
让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.
〈三〉解决问题
在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.
〈四〉情感态度与价值观
在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.
【教学重点】在具体情境中了解概率意义.
【教学难点】对频率与概率关系的初步理解
【教具准备】壹元硬币数枚、图钉数枚、多媒体课件
【教学过程】
一、创设情境,引出问题
教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.
二 、动手实践,合作探究
1.教师布置试验任务.
(1)明确规则.
把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.
(2)明确任务,每组掷币50次,以实事求是的态度,认真统计“正面朝上” 的频数及 “正面朝上”的频率,整理试验的数据,并记录下来..
2.教师巡视学生分组试验情况.
注意:(1).观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.
(2).要求真实记录试验情况.对于合作学习中有可能产生的纪律问题予以调控.
3.各组汇报实验结果.
由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入.
提出问题:是不是我们的猜想出了问题?引导学生分析讨论产生差异的原因.
在学生充分讨论的基础上,启发学生分析讨论产生差异的原因.使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性, 引导他们小组合作,进一步探究.
解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作.
4.全班交流.
把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据进行累计,按照书上P140要求填好25-2.并根据所整理的数据,在25.1-1图上标注出对应的点,完成统计图.
表25-2
抛掷次数
50
100
150
200
250
300
350
400
450
500
“正面向上”的频数
“正面向上”的频率
想一想1(投影出示). 观察统计表与统计图,你发现“正面向上”的频率有什么规律?
注意学生的语言表述情况,意思正确予以肯定与鼓励.“正面朝上”的频率在0.5上下波动.
想一想2(投影出示)
随着抛掷次数增加,“正面向上”的频率变化趋势有何规律?
在学生讨论的基础上,教师帮助归纳.使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性.在试验次数较少时,“正面朝上”的频率起伏较大,而随着试验次数的逐渐增加,一般地,频率会趋于稳定,“正面朝上”的频率越来越接近0.5. 这也与我们刚开始的猜想是一致的.我们就用0.5这个常数表示“正面向上”发生的可能性的大小.
为了给学生提供大量的、快捷的试验数据,利用计算机模拟掷硬币试验的课件,丰富学生的体验、提高课堂教学效率,使他们能直观地、便捷地观察到试验结果的规律性--大量重复试验中,事件发生的频率逐渐稳定到某个常数附近 .
其实,历史上有许多著名数学家也做过掷硬币的试验.让学生阅读历史上数学家做掷币试验的数据统计表(看书P141表25-3).
表25-3
试验者
抛掷次数(n)
“正面朝上”次数(m)
“正面向上”频率(m/n)
棣莫弗
2048
1061
0.518
布丰
4040
2048
0.5069
费勒
10000
4979
0.4979
皮尔逊
12000
6019
0.5016
皮尔逊
24000
12012
0.5005
5.下面我们能否研究一下“反面向上”的频率情况?
学生自然可依照“正面朝上”的研究方法,很容易总结得出:“反面向上”的频率也相应稳定到0.5.
教师归纳:
(1)由以上试验,我们验证了开始的猜想,即抛掷一枚质地均匀的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半).也就是说,用抛掷硬币的方法可以使小明与小强得到球票的可能性一样.
(2)在实际生活还有许多这样的例子,如在足球比赛中,裁判用掷硬币的办法来决定双方的比赛场地等等.
三、评价概括,揭示新知
问题1.通过以上大量试验,你对频率有什么新的认识?有没有发现频率还有其他作用?
学生探究交流.发现随机事件的可能性的大小可以用随机事件发生的频率逐渐稳定到的值(或常数)估计或去描述.
通过猜想试验及探究讨论,学生不难有以上认识.对学生可能存在语言上、描述中的不准确等注意予以纠正,但要求不必过高.
归纳:以上我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件的可能性的大小.
那么我们给这样的常数一个名称,引入概率定义.给出概率定义(板书):一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率(probability), 记作P(A)= p.
注意指出:
1.概率是随机事件发生的可能性的大小的数量反映.
2.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.
想一想(学生交流讨论)
问题2.频率与概率有什么区别与联系?
从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.
四.练习巩固,发展提高.
学生练习
1.书上P143.练习.1. 巩固用频率估计概率的方法.
2.书上P143.练习.2 巩固对概率意义的理解.
教师应当关注学生对知识掌握情况,帮助学生解决遇到的问题.
五.归纳总结
六、布置作业
完成P144 习题25.1 2、4
七、安全教育
八、教学反思
25.2 用列举法求概率(第一课时)
教学目标
1.理解P(A)=(在一次试验中有n种可能的结果,其中A包含m种)的意义.
2.应用P(A)=解决一些实际问题.
复习概率的意义,为解决利用一般方法求概率的繁琐,探究用特殊方法—列举法
求概率的简便方法,然后应用这种方法解决一些实际问题.
重点难点
1.重点:一般地,如果在一次试验中,有几种可能的结果,并且它们发生的可能性都
相等,事件A包含其中的。种结果,那么事件A发生的概率为P(A)= ,以及运用它
解决实际间题.
2.难点与关键:通过实验理解P(A)= 并应用它解决一些具体题目
教学过程
一、复习引入
(老师口问.学生口答)请同学们回答下列问题.
1. 概率是什么?
2. P(A)的取值范围是什么?
3. 在大量重复试验中,什么值会稳定在一个常数上?俄们又把这个常数叫做什么?
4. A=必然事件,B是不可能发生的事件,C是随机事件.诸你画出数轴把这三个量表示出来.
二、探索新知
把学生分为10组,按要求做试验并回答问题.
1.从分别标有1,2,3 ,4,5号的5根纸签中随机地抽取一根.抽出的号码有多少种?其抽到1的概率为多少?
2.掷一个骰子,向上的一面的点数有多少种可能?向上一面的点数是1的概率是多少?
老师点评:1.可能结果有1,2,3,4,5等5种杯由于纸签的形状、大小相同,又是随机
抽取的,所以我们可以认为:每个号被抽到的可能性相等,都是1/5.其概率是1/5。
2.有1,2,3,4,5,6等6种可能.由于股子的构造相同质地均匀,又是随机掷出的,
所以我们可以断言:每个结果的可能性相等,都是1/6,所以所求概率是1/6所求。
以上两个试验有两个共同的特点:
1.一次试验中,可能出现的结果有限多个.
2.一次试验中,各种结果发生的可能性相等.
对于具有上述特点的试验,我们可以从事件所包含的各种可能的结果在全部可能
的试验结果中所占的比分析出事件的概率.
因此,一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相
等,事件A包含其中的、种结果,那么李件A发生的概率为P(A)=
例1.小李手里有红桃1,2,3,4,5,6,从中任抽取一张牌,观察其牌上的数字.求下
列事件的概率.
(1)牌上的数字为3;
(2)牌上的数字为奇数;
(3)牌上的数字为大于3且小于6.
例2:如图25-7所示,有一个转盘,转盘分成4个相同的扇形,颇色分为红、绿、黄三种颇色,指针的位置固定,转动转盘后任其自由停止.其中的某个扇形会恰好停在指
针所指的位里(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率
(1)指针指向绿色;
(2)指针指向红色或黄色
(3)指针不指向红色.
例3如图25-8所示是计算机中“扫雷“游戏的画面,在个小方格的正方形雷区中,随机埋藏着颗地雷,每个小方格内最多只能藏颗地雷。
小王在游戏开始时随机地踩中一个方格,踩中后出现了如图所示的情况,我们把与标号的方格相邻的方格记为区域(画线部分),区域外的部分记为区域,数字表示在区域中有颗地雷,那么第二步应该踩区域还是区域?
三、巩固练习
教材 练习,, 练习
五、归纳小结
本节课应用列举法求概率。
5、 布置作业
1、 教材 综合运用 拓广探索
7、 安全教育
25.2 用列举法求概率(第三课时)
教学目标:
1. 进一步理解有限等可能性事件概率的意义。
2. 会用树形图求出一次试验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,从而正确地计算问题的概率。
3. 进一步提高分类的数学思想方法,掌握有关数学技能(树形图)。
教学重点:正确鉴别一次试验中是否涉及3个或更多个因素。
教学难点;用树形图法求出所有可能的结果。
一、解决问题,提高能力
例1 同时掷两个质地均匀的骰子,计算下列事件的概率:
(1)两个骰子的点子数相同;(2)两个骰子的点子数的和是9;(3)至少有一个骰子的点数为2。
思考:教科书第152页的思考题。
例2 教科书第152页例6。
在学生充分思考和交流的前提下,老师介绍树形图的方法。
第一步可能产生的结果为A和B,两者出现的可能性相同且不分先后,写在第一行。
第二步可能产生的结果有C、D和E,三者出现的可能性相同且不分先后,从A和B分别画出三个分支,在分支下的第二行分别写上C、D和E。
第三步可能产生的结果有两个H和I,两者出现的可能性相同且不分先后,从C、D和E分别画出两个分支,在分支下的第三行分别写上H和I。(如果有更多的步骤可依上继续)
第四步按竖向把各种可能的结果竖着写在下面,就得到了所有可能的结果的总数。再找出符合要求的种数,就可以利用概率和意义计算概率了。
问:此题可以用列表法求出所有可能吗?
小结:教科书第153页左边的结论。
思考:教科书第153页的思考题。
二、练习,巩固技能
教科书第154页练习。
练习1是每次试验涉及2个因素的问题,共有36种可能的结果;
练习2是每次试验涉及3个因素的问题,共有27种可能的结果。
尽管这2个问题可能的结果都比较多,但用树形图的方法并不难求得,重要的是要让学生正确把握题意,鉴别每次试验涉及的因素以及这些因素的顺序。
三、单元小结
1. 本单元学习的概率问题有什么特点?
2. 为了正确地求出所求的概率,我们要求出各种可能的结果,那么通常是用什么方法求出各种可能的结果呢?
四、能力提高
教科书第155页习题25.2第9题。
5、 布置作业
6、 安全教育
七、教学反思
25.3.1利用频率估计概率
教学目标:
知识与技能:1、当事件的试验结果不是有限个或结果发生的可能性不相等时,要用频率来估计概率。
2、通过试验,理解当试验次数较大时试验频率稳定于理论概率,进一步发展概率观念。
过程与方法:通过实验及分析试验结果、收集数据、处理数据、得出结论的试验过程,体会频率与概率的联系与区别,发展学生根据频率的集中趋势估计概率的能力。
情感态度与价值观:1、通过具体情境使学生体会到概率是描述不确定事件规律的有效数学模型,在解决问题中学会用数学的思维方式思考生活中的实际问题的习惯。
2、在活动中进一步发展合作交流的意识和能力。
教学重点:理解当试验次数较大时,试验频率稳定于理论概率。
教学难点:对概率的理解。
设计教学程序:
一、 问题情境:
妈妈有一张马戏团门票,小明、小华和小红都想去看演出,怎么办呢?妈妈想用掷骰子的办法决定,你觉得这样公平吗?说说你的理由?但由于一时找不到骰子,妈妈决定用一个小长方体(涂有三种颜色,对面的颜色相同)来代替你觉得这样公平吗?选哪种颜色获得门票的概率更大?说说你的理由!
二、合作游戏:
1、实验:二人一组,一人抛掷小长方体,一人负责记录,合作完成30次试验,并完成下面表格一的填写和有关结论的得出。
表格一:
颜色
红
绿
蓝
频 数
频 率
概 率
问题:(1)你认为哪种情况的概率最大?
_________________红色________________________________________.
(2)当试验次数较小时,比较三种情况的频率,你能得出什么结论? 当试验次数较小时,统计出的频率不能估计概率 .
2、累计收集数据:二人一组,任选自己喜欢的颜色分别汇总其中前两组(60次)、前三组(90次)、前四组(120次)、五组(150次)。。。。。的试验数据,完成表格二的填写,并绘制出相应的折线统计图和有关结论的得出。
表格二:
30 60 90 120 150 180……
试验次数
频率
试验
次数
30
60
90
120
150
180
210
240
……
问题:当试验次数较大时,比较数字 色的频率与其相应的概率,你能得到什么结论?_________________________________________________.
4、得出试验结论。
三、随堂练习。书本P158页 “柑橘的损坏率”填写表25--6
四、拓展提升:解决问题2
1、 柑橘的损坏率是多少?
2、 到达目的地后完好的柑橘还有多少千克?
3、 把损坏的柑橘也算在内,到达目的地后柑橘的成本约是多少元?
4、 设每千克定价为x元,则可以得到的方程是 ?
五、课堂小结:畅所欲言。
六、课内拓展: 同步练P95页第8题
七、安全教育
八、教学反思
25.3.2利用频率估计概率
教学目标:
知识与技能:了解模拟实验在求一个实际问题中的作用,进一步提高用数学知识解决实际问题的能力。
过程与方法:初步学会对一个简单的问题提出一种可行的模拟实验。
情感态度与价值观:1、提高学生动手能力,加强集体合作意识,丰富知识面,激发学习兴趣。2、渗透数形结合思想和分类思想。
教学重点:理解用模拟实验解决实际问题的合理性。
教学难点:会对简单问题提出模拟实验策略。
设计教学程序:
一、问题情境:
小明参加夏令营,一天夜里熄灯了,伸手不见五指,想到明天去八达岭长城天不亮就出发,想把袜子准备好,而现在又不能开灯。袋子里有尺码相同的3双黑袜子和1双白袜子,混放在一起,只能摸黑去拿出2只。同学们能否求出摸出的2只恰好是一双的可能性?
二、问题3:
一个学习小组有6名男生3名女生。老师要从小组的学生中先后随机地抽取3人参加几项测试,并且每名学生都可被重复抽取。你能设计一种实验来估计“被抽取的3人中有2名男生1名女生”的概率的吗?
下面的表中给出了一些模拟实验的方法,你觉得这些方法合理吗?若不合理请说明理由:
需要研究的问题
用替代物模拟实验的方法
用什么实物
一枚硬币
一枚图钉
怎样实验
抛起后落地
抛起后落地
考虑哪一事件出现的机会
正面朝上的机会
钉尖朝上的机会
需要研究的问题
用替代物模拟实验的方法
用什么实物
3个红球
2个黑球
3个男生名字
2个女生名字
怎样实验
摸出1个球
摸出1个名字
考虑哪一事件出现的机会
恰好摸出红球的机会
恰好摸出男生名字的机会
三、随堂练习。
在抛一枚均匀硬币的实验中,如果没有硬币,则下列可作为替代物的是 ( )A.一颗均匀的骰子 B.瓶盖 C.图钉 D.两张扑克牌(1张黑桃,1张红桃)
四、课堂小结:畅所欲言。
五、安全教育
六、教学反思
25.4课题学习 键盘上字母的排列规律
教学目标:
知识与技能:结合具体情境,初步感受统计推断的合理性,进一步体会概率与统计之间的联系及概率的广泛应用。
过程与方法:经历试验、统计等活动,在活动中发展学生的合作交流的意识和能力。
情感态度与价值观:通过具体情境使学生养成乐于接触社会环境中的数学信息,乐于用数学思维去思考生活中的问题。
教学重点:进一步深刻领会用试验频率来估算概率的方法。
教学难点:对实际问题的分析,并体会用试验步骤来估算概率的方法。
教具学具准备:英语教科书,键盘等
设计教学程序:
一、 问题的提出:
计算机键盘上的英文字母为什么没有按照字母表顺序从A、B。。。到Z排列,如果那样不是更便于记忆吗?
二、合作活动
1.收集和分析数据:
统计英语教科书中任一部分中26个字母及空格出现的频率(分组合作完成,每人找其中一个字母的出现频率)
(1) 统计每一个字母出现的次数和所有字母出现的总次数。
(2) 计算字母出现的频率m/n
(3) 将字母按出现的频率从小到大的顺序排列出。(学生按所查字母出现频率从大到小回答,老师在黑板上写出)
出现频率最高的是______,出现频率较低的字母有______________________
2.结论的应用与解释:
左手
右手
小
无
中
食
食
中
无
小
上
Q
W
E
R
T
Y
U
I
O
P
中
A
S
D
F
G
H
J
K
L
;
下
Z
X
C
V
B
N
M
,
。
/?
问:空格键为什么要设计在键盘的下方正中央位置?
出现频率高的字母一般放在哪里?出现频率低的字母一般放在哪里?为什么?
答:键盘上字母的设计,既考虑手指移动的灵活特征,又考虑到各个键的使用频率大小。
三、随堂练习。汉字使用频率及手机中文输入法的顺序。
展开阅读全文
相关搜索