《2022年新人教版六年级下册数学知识点.docx》由会员分享,可在线阅读,更多相关《2022年新人教版六年级下册数学知识点.docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选学习资料 - - - - - - - - - 一、负数1、负数的由来:为了表示 相反意义的两个量(如盈利亏损、收入支出 ),仅有学过的 0,1 ,3.4,2 5 是远远不够的;所以显现了负数,以盈利为正、亏损为负;以收入为正、支出为负2、负数 :小于 0 的数叫负数(不包括0),数轴上 0 左边的数叫做负数;如一个数小于 0,就称它是一个负数;负数有很多个,其中有(负整数,负分数和负小数)负数的写法:数字前面加负号“ ” 号,不行以省略.例如: -2,-5.33,-45,-2 53、正数 :大于 0 的数叫正数(不包括 0),数轴上 0 右边的数叫做正数 . 如一个数大于 0,就称它是一个
2、正数;正数有很多个,其中有(正整数,正分数和正小数)正数的写法:数字前面可以加正号“+” 号,也可以省略不写;例如:+2,5.33,+45,2 54、 0 既不是正数,也不是负数,它是正、负数的分界限负数都小于 0,正数都大于 0,负数都比正数小,正数都比负数大5、数轴:负正负分界正0 负数0 正数左边右边6、比较两数的大小:利用数轴:负数 0正数或左边右边利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小;负数之间比较大小,数字大的反而小,数字小的反而大 . 31-1 3-11 名师归纳总结 - - - - - - -第 1 页,共 14 页精选学习资料 - - - - - - -
3、 - - 二、百分数 二 (一)、折扣和成数 1、折扣:用于商品,现价是原价的百分之几,叫做折扣;通称“ 打折”;几折就是特别之几,也就是百分之几十;例如八折= 8 10 =80 ,六折五 =6.5 10 = 65 100 =65解决打折的问题,关键是先将打的折数转化为百分数或分数,然后依据求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答商品现在打八折:现在的售价是原价的 80商品现在打六折五:现在的售价是原价的 652、成数:几成就是特别之几,也就是百分之几十;例如一成= 1 10 =10 ,八成五 =8.5 10 = 85 100 =80解决成数的问题,关键是先将成数转化为百分
4、数或分数,然后依据求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答这次衣服的进价增加一成:这次衣服的进价比原先的进价增加 10今年小麦的收成是去年的八成五:今年小麦的收成是去年的 85(二)、税率和利率1、税率(1)纳税:纳税是依据国家税法的有关规定,依据肯定的比率把集体或个人收入的一部分缴纳给国家;(2)纳税的意义: 税收是国家财政收入的主要来源之一;训练、文化和国防安全等事业;(3)应纳税额:缴纳的税款叫做应纳税额;(4)税率:应纳税额与各种收入的比率叫做税率;国家用收来的税款进展经济、 科技、(5)应纳税额的运算方法:应纳税额 =总收入 税率收入额 =应纳税额 税率2、利率(
5、1)存款分为活期、整存整取和零存整取等方法;(2)储蓄的意义:人们经常把临时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有方案,仍可以增加一些收入;(3)本金:存入银行的钱叫做本金;(4)利息:取款时银行多支付的钱叫做利息;(5)利率:利息与本金的比值叫做利率;2 名师归纳总结 - - - - - - -第 2 页,共 14 页精选学习资料 - - - - - - - - - (6)利息的运算公式:利息本金 利率 时间利率利息 时间 本金100(7)留意:如要上利息税(国债和训练贮存的利息不纳税),就:税后利息 =利息-利息的应纳税额 =利息-利息 利
6、息税率 =利息 1-利息税率 税后利息 =本金 利率 时间1-利息税率 购物策略:估量费用:依据实际的问题,挑选合理的估算策略,进行估算;购物策略:依据实际需要,对常见的几种优惠策略加以分析和比较,并能够最终挑选最为优 惠的方案学后反思:做事情运用策略的好处三、圆柱和圆锥 3 名师归纳总结 - - - - - - -第 3 页,共 14 页精选学习资料 - - - - - - - - - (一)、圆柱 1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的;圆柱也可以由长方形卷曲而得到; (两种方式: 1.以长方形的长为底面周长,宽为高 ;2.以长方形的宽为底面周长, 长为高;其中,第一种方式得
7、到的圆柱体 体积较大;)2、圆柱的高是两个底面之间的距离,一个圆柱有很多条高,他们的数值是相等的 3、圆柱的特点:(1)底面的特点:圆柱的底面是完全相等的两个圆;(2)侧面的特点:圆柱的侧面是一个曲面;(3)高的特点:圆柱有很多条高4、圆柱的切割:横切:切面是圆,表面积增加2 倍底面积,即 S 增 =2 r2竖切(过直径):切面是长方形(假如 h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即 S增=4rh 5、圆柱的侧面绽开图:沿着高绽开,绽开图形是长方形,假如h=2 r,绽开图形为正方形不沿着高绽开,绽开图形是平行四边形或不规章图形无论怎么
8、绽开都得不到梯形6、圆柱的相关运算公式:底面积:S 底= r2底面周长: C 底= d=2 r 侧面积:S 侧=2 rh 表面积:S 表=2S底+S 侧=2 r2+2 rh 体积:V 柱= r2h 考试常见题型:已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积 已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积 已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再依据圆柱的相关运算公 式进行运算
9、 无盖水桶的表面积 = 侧面积一个底面积 油桶的表面积 = 侧面积两个底面积 4 名师归纳总结 - - - - - - -第 4 页,共 14 页精选学习资料 - - - - - - - - - 烟囱通风管的表面积 =侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积 +一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积 +两个底面积:油桶、米桶、罐桶类(二)、圆锥1、圆柱的形成:圆锥是以直角三角形的始终角边为轴旋转而得到的圆锥也可以由扇形卷曲而得到2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高3、圆锥的特点:(1)底面的特点:圆锥的底面一个
10、圆;(2)侧面的特点:圆锥的侧面是一个曲面;(3)高的特点:圆锥有一条高;4、圆柱的切割:横切:切面是圆竖切(过顶点和直径直径) :切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,即 S 增=2rh 5、圆锥的相关运算公式:底面积:S 底= r2底面周长: C 底= d=2 r 体积:V 锥=1 3 r2h 考试常见题型:已知圆锥的底面积和高,求体积,底面周长已知圆锥的底面周长和高,求圆锥的体积,底面积已知圆锥的底面周长和体积,求圆锥的高,底面积以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再依据圆柱的相关运算公式进行运算(三)、圆柱
11、和圆锥的关系1、圆柱与圆锥等底等高,圆柱的体积是圆锥的 3 倍;2、圆柱与圆锥等底等体积,圆锥的高是圆柱的 3 倍;3、圆柱与圆锥等高等体积,圆锥的底面积 留意:是底面积而不是底面半径 是圆柱的 3 倍;4、圆柱与圆锥等底等高,体积相差2 3 Sh 题型总结5 名师归纳总结 - - - - - - -第 5 页,共 14 页精选学习资料 - - - - - - - - - 直接利用公式:分析清晰求的的是表面积,侧面积、底面积、体积分析清晰半径变化导致底面周长、侧面积、底面积、体积的变化分析清晰两个圆柱 或两个圆锥 半径、底面积、底面周长、侧面积、表面积、体积之比圆柱与圆锥关系的转换:包括削成最
12、大体积的问题正方体,长方体与圆柱圆锥之间 横截面的问题浸水体积问题: 水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度 容积是圆柱或长方体,正方体等体积转换问题: 一个圆柱融解后做成圆锥, 或圆柱中的溶液倒入圆锥, 都是体积不变的 问题,留意不要乘以1 3(四)、典型题:1、一个圆柱的侧面绽开是一个正方形,它的高是底面直径的 倍,即 h=C= d, 它的侧面积是 S 侧=h22、圆柱的底面半径扩大 2 倍,高不变,表面积扩大 2 倍,体积扩大 4 倍;3、圆柱的底面半径扩大 2 倍,高也扩大 2 倍,表面积扩大 4 倍,体积扩大 8 倍;4、圆柱的底面半径扩大 3
13、倍,高缩小 3 倍,表面积不变,体积扩大 3 倍;5、一个圆柱和它等底等高的圆锥体积之和是 48 立方厘米,这个圆柱的体积是()立方厘米,圆锥的体积是()立方厘米圆锥和它等底等高的圆柱体积之比是 说了 4 份的和一共是 48 立方厘米;1 :3,圆柱占 1 份,圆锥占 3 份,一共 4 份,题目中 圆锥占了 4 份中的 1 份,圆柱占了 4 份中的 3 份V 锥:48 4=12立方厘米 或 481 4 =12立方厘米 V 柱:48 4=12立方厘米 12 3=36立方厘米 或 483 4 =36立方厘米 6、一个圆柱和它等底等高的圆锥体积之差是 24 立方分米,这个圆柱的体积是()立方分米,圆
14、锥的体积是()立方分米;圆锥和它等底等高的圆柱体积之比是1 :3,圆柱占 1 份,圆锥占 3 份, 1 份和 3 份相差了2 份,题目中说了相差 24 立方分米, 2 份就是 24 立方分米圆锥占了 2 份中的 1 份,圆柱占了 2 份中的 3 份V 锥:24 2=12立方分米 或 241 2 =12立方分米 名师归纳总结 - - - - - - -第 6 页,共 14 页精选学习资料 - - - - - - - - - V 柱:24 2=12立方分米 12 3=36立方分米 或243 2 =36立方分米 7、一个圆柱和一个圆锥, 体积相等,底面积也相等, 圆柱的高是 2 厘米,圆锥的高是()
15、厘米;V 柱=V 锥 V 柱=V 锥S柱底 h 柱= 13 S 锥底 h 锥 S 柱底 h 柱= 1 3 S 锥底 h 锥 h 柱= 1 3 h 锥 S 柱底 = 1 3 S 锥底 2= 13 h 锥 4 = 1 3 S 锥底 h 锥= 2 1 3 S 锥底 = 41 3 h 锥=6 S 锥底 =12 8、一个圆柱和一个圆锥体积相等,高也相等,圆柱的底面积是 是()平方分米;4 平方分米,圆锥的底面积9、一个圆锥和一个圆柱的底面积相等,体积的比是 1:6;假如圆锥的高是 3.6 厘米,圆柱的高是()厘米,假如圆柱的高是 3.6 厘米,圆锥的高是()厘米;1 13 S 锥底 h 锥 1 3 S
16、锥底 h 锥 1 S 柱底 h 柱 6 S 柱底 h 柱 6 1 13 h 锥 1 3 h 锥 1 h 柱 6 h 柱 6 h 柱 1 = 1 3 h 锥 6 h 柱 = 1 3 3.6 6 hh 柱 = 1 3 h 锥 6 柱1 3 6 = h 锥h 柱 = 7.2 3.61 3 6 = h 锥10、一个圆柱体,把它的高截短 3 厘米,它的底面积削减 94.2 平方厘米,这个圆柱的体积削减了()立方厘米; r2C=S 侧 h r=C 2 V= r2h 7 名师归纳总结 - - - - - - -第 7 页,共 14 页精选学习资料 - - - - - - - - - =94.2 3 =31.
17、4 3.14 2 =3.14 5 3 =31.4厘米 =5厘米 =235.5立方厘米 四、比例 1、比的意义(1)两个数相除又叫做两个数的比(2)“:”是比号,读作 “比”;比号前面的数叫做比的前项,比号后面的数叫做比的后项;比 的前项除以后项所得的商,叫做比值;(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数;(5)比的后项不能是零;(6)依据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数 值;2、比的基本性质: 比的前项和后项同时乘或者除以相同的数(比的基本性质;0 除外),比值不变
18、,这叫做3、求比值和化简比: 求比值的方法: 用比的前项除以后项, 它的结果是一个数值可以是整数,也可以是小数或分数;依据比的基本性质可以把比化成最简洁的整数比;它的结果必需是一个最简比,即前、后项 是互质的数;4、按比例安排:在农业生产和日常生活中,经常需要把一个数量依据肯定的比来进行安排;这种安排的方法 通常叫做按比例安排;方法:第一求出各部分占总量的几分之几,然后求出总数的几分之几是多少;5、比例的意义: 表示两个比相等的式子叫做比例;组成比例的四个数,叫做比例的项;两端的两项叫做外项,中间的两项叫做内项;6、比例的基本性质: 在比例里,两个外项的积等于两个两个内项的积;这叫做比例的基本
19、性 质;7、比和比例的区分(1)比表示两个量相除的关系,它有两项(即前、后项)有四项(即两个内项和两个外项) ;比例表示两个比相等的式子,它名师归纳总结 - - - - - - -第 8 页,共 14 页精选学习资料 - - - - - - - - - (2)比有基本性质,它是化简比的依据;比例也有基本性质,它是解比例的依据;8、成正比例的量: 两种相关联的量,一种量变化,另一种量也随着变化,假如这两种量中相对应的两个数的比值(也就是商)肯定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系;用字母表示y x =k(肯定)9、成反比例的量: 两种相关联的量,一种量变化,另一种量也随着变化,
20、假如这两种量中相对应的两个数的积肯定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系;用字母表示 xy=k(肯定)10、判定两种量成正比例仍是成反比例的方法:关键是看这两个相关联的量中相对就的两个数的商肯定仍是积肯定,假如商肯定,就成正比例;假如积肯定,就成反比例;11、比例尺: 一幅图的图上距离和实际距离的比,叫做这幅图的比例尺;12、比例尺的分类(1)数值比例尺和线段比例尺(2)缩小比例尺和放大比例尺13、图上距离:实际距离 =比例尺或图上距离=比例尺实际距离实际距离 比例尺 =图上距离 14、应用比例尺画图的步骤:图上距离 比例尺 =实际距离(1)写出图的名称、(2)确定比例尺;(
21、3)依据比例尺求出图上距离; (4)画图(画出单位长度)(5)标出实际距离,写清地点名称(6)标出比例尺 15、图形的放大与缩小:外形相同,大小不同;16、用比例解决问题:依据问题中的不变量找出两种相关联的量,并正确判定这两种相关联的量成什么比例关系,并依据正、反比例关系式列出相应的方程并求解;17、常见的数量关系式: (成正比例或成反比例)单价 数量 =总价单产量 数量 =总产量速度 时间 =路程工效 工作时间 =工作总量总价 单价=数量总产量 单产量=数量路程 速度=时间工作总量 工作效率=工作时间9 名师归纳总结 - - - - - - -第 9 页,共 14 页精选学习资料 - - -
22、 - - - - - - 总价 数量=单价总产量=单产量路程 时间=速度工作总量=工作效率数量工作时间18、已知图上距离和实际距离可以求比例尺;已知比例尺和图上距离可以求实际距离;已知比例尺和实际距离可以求图上距离;运算时图距和实距单位必需统一;19、播种的总公顷数肯定,每天播种的公顷数和要用的天数是不是成反比例?答:每天播种的公顷数 天数 =播种的总公顷数已知播种的总公顷数肯定, 就是每天播种的公顷数和要用的天数的积是肯定的,所以每天播种的公顷数和要用的天数成反比例;20、判定下面各题的两个量是不是成比例,假如成比例,成什么比例?(1)订阅中国少年报的份数和钱数;由于钱数= 每份的钱数(肯定
23、)订阅中国少年报的份数所以,订阅中国少年报的份数和钱数成正比例;(2)三角形的底肯定,它的面积和高;由于三角形的面积=1 2(肯定)高所以,它的面积和高成正比例;(3)图上距离肯定,实际距离和比例尺;由于,实际距离 比例尺 =图上距离(肯定)所以,实际距离和比例尺成反比例;(4)一条绳子的长度肯定,剪去的部分和剩下的部分;由于,剪去的部分和剩下的部分不存在比值或积肯定的关系,所以,剪去的部分和剩下的部分不成比例;(5)圆的面积和它的半径不成正比例,由于圆的面积和它的半径的比值不肯定,所以圆的面积和它的半径不成正比例;自行车里的数学:前齿轮转数 前齿轮齿数 =后齿轮转数 后齿轮齿数蹬一圈走的路程
24、 =车轮周长 (蹬一圈,后轮转动的圈数)蹬一圈走的路程 =车轮周长 (前齿轮齿数:后齿轮齿数)48:281.71 48:24=2 48:20=2.4 48:182.67 48:16=3 48:143.4340:281.43 40:241.67 40:20=2 40:182.22 40:16=2.5 40:142.86 10 名师归纳总结 - - - - - - -第 10 页,共 14 页精选学习资料 - - - - - - - - - 前、后齿轮齿数相差大的,比值就大,这种组合走的就远,因而车速快,但骑车人较费劲前、后齿轮齿数相差小的,比值就小,这种组合走的就近,因而车速慢,但骑车人较省力自
25、行车跑的快慢与两个条件有关:五、 数学广角鸽巢问题1、前后齿轮齿数的比值; 2、车轮的大小(合理)1、鸽巣原理是一个重要而又基本的组合原理 , 在解决数学问题时有特别重要的作用什么是鸽巣原理 , 先从一个简洁的例子入手 放法, 如下表, 把 3 个苹果放在 2 个盒子里 , 共有四种不同的放法 盒子 1 盒子 2 1 3 0 2 2 1 3 1 2 4 0 3 无论哪一种放法 , 都可以说“ 必有一个盒子放了两个或两个以上的苹果”; 这个结论是在“ 任意放法” 的情形下 , 得出的一个“ 必定结果”;类似的 , 假如有 5 只鸽子飞进四个鸽笼里 , 那么肯定有一个鸽笼飞进了 2 只或 2 只以
26、上的鸽子假如有 6 封信 , 任意投入 5 个信箱里 , 那么肯定有一个信箱至少有 2 封信我们把这些例子中的“ 苹果”、“ 鸽子” 、“ 信” 看作一种物体,把“ 盒子”、“ 鸽笼” 、“ 信箱” 看作鸽巣 , 可以得到鸽巣原理最简洁的表达形式利用公式进行解题:物体个数 鸽巣个数 =商 余数至少个数 =商 +1 2、摸 2 个同色球运算方法;要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多 1;物体数颜色数 (至少数1) 1 极端思想:用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,都11 名师归纳总结 - - - - - - -第 11 页,共 14 页精选学习资料
27、 - - - - - - - - - 能保证肯定有两个球是同色的;公式:两种颜色: 213(个)三种颜色: 31 4(个)四种颜色: 41 5(个)常见乘法运算(敏锐数字):25 4100 125 81000 加法交换律简算例子 加法结合律简算例子 乘法交换律简算例子 乘法结合律简算例子0.875+2 3 +1 3 +1 4 +0.8 0.4 335 2 230.375 16 3=7 8 +2 3 +1 =2 3 +1 4 +4 =2 5335 =233 816=7 8 +1 8 +2 =2 3 +1 4 +4 5 =2 52 533 =23 3 816 3 =1+2 3 =2 3 +1 =1
28、3 =232 含加法交换律与结合律 含乘法交换律与结合律 数字换减法式 数字换加法式0.875+2 3 +1 8 +1 0.375 29 716 3 7 29 355 36 1019 10=7 8 +2 3 +1 8 +1 =3 829 7167 29 = 36-1 5 36 = 100 +1 9 10=7 8 +1 8 + 2 3 +1 =3 816 3297 29 =365 36 -1 5 36 =100 9 10 +1 9 10= 7 8 +1 8 + 2 3 +1 3 = 3 816 3 29 7 7 29 =5- 5 36 =1+ 9 10=1+1 =21 乘法安排律提取式 乘法安排
29、律提取式 乘法安排律 添项 乘法安排律 添项 101 0.9- 9 101 95.5 1.6-15.5 1.6 101 0.9- 9 10 525 8 +295 8 -0.625 =101 9 10 - 9 101 =95.5-15.5 1.6 =1019 10 - 9 10 =525 8 +295 8 -5=101 9 10 -1 9 10 =80 1.6 =1019 10 -1 9 10 =525 8 +295 8 -1 5=101-1 9 10 =800 16 =101-1 9 10 =52+29-15 8=1009 10 =1009 10 =805 8减法的性质简算例子 减法的性质简算
30、例子 减法的性质简算例子 数字换乘法式18-5 8 -0.375 13 4 - 7 16 -0.75 122 5 - 7 16 +0.4 0.56 12512 名师归纳总结 - - - - - - -第 12 页,共 14 页精选学习资料 - - - - - - - - - =18-5 8 -3=13 4 - 7 16 -3=122 5 - 7 16 +2 5 =0.7 0.8 125 =18-5 8 +3 8 =13 4 -3 4 - 7 16=122 5 -2 5 - 7 16=0.7 0.8 125=18-1 =1- 7 16=12- 7 16=0.7 100 除法的性质简算例子除法的性
31、质简算例子除法的性质简算例子数字换乘法式3200 2.5 0.4 2700 2.5 2.7 5900 2.5 5.9 33333 33333 =3200 2.5 0.4 =2700 2.7 2.5 =5900 5.9 2.5 =11111 3 33333 =3200 1 =1000 2.5 =1000 2.5 =11111 99999 同级运算中,第一个数不能动,后面的数可以带着符号搬家=11111 100000-112 3 + 7 16 -2 250 0.8 0.4 12 3 - 7 16 +1 290.25 0.29 =12 3 -2 3 + 7 16 =250 0.4 0.8 =12 3
32、 +1 3 - 7 16 =29 0.29 0.25 =1+ 7 16 =100 0.8 =2- 7 16 =1000.25 解方程方法一 :消项 假如消 3,方程两边就同时 3 ;假如消 3,方程两边就同时3 1:把方程里的“ 括号” 全部去掉,两种去括号的方法任选其一2:假如两边都有 几 , 要先消去其中一边的 几假如有“-几” ,就把“-几” 消去,假如没有“-几” ,就把较小的 消去掉 3:消去 “ -几” ,消去“ ”4:把 这边的数字全部消掉,先消“+ -”再消“ ”最终消“ ”留意:无论解到哪一步,数字 +几 都要写成 几 +数字 解方程方法二 :移项 3 移到另一边就变成 3,
33、 3 移到另一边就变成3 1:把方程里的“ 括号” 全部去掉,两种去括号的方法任选其一2:假如两边都有 几 ,就把其中一边的 几 移到另一边假如有“-几” ,就把“-几” 移到另一边;假如没有“-几” ,就把较小的 移到另一边 3:把“-几” 移到另一边,把“ ” 移到另一边”4:把 这边的数字全部移到另一边,先移“+ -”再移“ ”最终移“ ”留意:无论解到哪一步,数字 +几 都要写成 几 +数字 长度单位换算 km m dm cm mm1 千米=1000 米 1 米=10 分米 1 分米 =10 厘米 1 米=100 厘米 1 厘米=10 毫米13 名师归纳总结 - - - - - - -
34、第 13 页,共 14 页精选学习资料 - - - - - - - - - 面积单位换算km2m2dm2cm2mm21 平方千米 =100 公顷1 公顷 =10000 平方米1 平方米 =100 平方分米1 平方分米 =100 平方厘米1 平方厘米 =100 平方毫米体容积单位换算 L mL m3 dm3 cm31 立方米 =1000 立方分米 1 立方分米 =1000 立方厘米 1 升=1000 毫升1 立方米 =1000 升 1 立方分米 =1 升 1 立方厘米 =1 毫升质量单位换算 t k 1 吨=1000 千克 1 千克=1000 克 1 千克 =1 公斤人民币单位换算1 元=10 角1 角=10 分1 元=100 分小月 30 天的有:46911 月时间单位换算h min s 1 世纪=100 年1 年=12 月大月 31 天有:135781012 月平年 2 月 28 天, 闰年 2 月 29 天平年全年 365 天, 闰年全年 366 天1 日=24 小时1 时=60 分1 分=60 秒1 时=3600 秒+ - = 23 r214 名师归纳总结 - - - - - - -第 14 页,共 14 页