《2022年沪教版初中数学知识点汇总3.docx》由会员分享,可在线阅读,更多相关《2022年沪教版初中数学知识点汇总3.docx(58页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选学习资料 - - - - - - - - - 整式第一节整式的概念9.1.2.3、字母表示数 代数式 :用括号和运算符号把数或表示数的字母连接而成的式子叫代数式;单独的数或字母也是代数式;代数式的书写 :1、代数式中显现乘号通常写作“就;*” 或省略不写,但数与数相乘不遵循此原2、数字与字母相乘,数字写在字母前面,而有理数要写在无理数的前面;3、带分数应写成假分数的形式,除法运算写成分数形式;4、相同字母相乘通常不把每个因式写出来,而写成幂的形式;5、代数式不能含有“=、 、 、” 符号;叫代数式代数式的值: 用数值代替代数式中的字母,依据代数式的运算关系运算出的结果,的值;留意: 1、代
2、数式中省略了乘号,带入数值后应添加 ;2、假设带入的值是负数时,应添上括号;3、留意解题格式标准,应写“ 当 .时,原式 = .” . 4、在实际问题中代数式所取的值应使实际问题有意义;1、由数与字母的乘积组成的代数式称为单项式;单独一个数或字母 也是单项式;2、系 数:单项式中的数字因数叫做这个单项式的系数;3、单项式的次数:一个单项式中全部字母的指数的和叫做这个单项 式的次数;4、多项式:几个单项式的和叫做多项式;其中,每个单项式叫做多项式的项,不含字母的 项叫做常数项;5、多项式的次数:多项式里次数最高的项的次数叫做这个多项式的 次数 6、整式:单项式和多项式统称为整式;1、同类项:所含
3、字母相同,并且相同字母的指数也相同的项叫做同类项;2、合并同类项:把多项式中的同类项合并成一项叫做合并同类项;一个多项式合并后含有几项,这个多项式就叫做几项式;3、合并同类项的法就是:把同类项的系数相加的结果作为合并后 的系数,字母和字母的指数不变;其次节 9.6 整式的加减:去括号法就:1括号前面是 号,去掉 号和括号,括号里各项的不变号;2括号前面是 号,去掉 号和括号,括号里的各项都变号;添括号法就1所添括号前面是“+” 号,括到括号里的各项都不变符号;2所添括号前面是“ ” 号,括到括号里的各项都转变符号;第三节整式的乘法9.7 同底数幂的乘法、9.8 幂的乘方、 9.9 积的乘方:同
4、底数幂的乘法名师归纳总结 a m a n=a m+nm、n 都是正整数 ;第 1 页,共 34 页- - - - - - -精选学习资料 - - - - - - - - - 同底数幂相乘,底数不变,指数相加;幂的乘方与积的乘方a mn=a mnm、n 都是正整数 幂的乘方,底数不变,指数相乘;abn=an b n n都是正整数 积的乘方等于各因式乘方的积;同底数幂的除法a m an=a m-na 0,mn 都是正整数,且mn 同底数幂相除,底数不变,指数相减;a 0=1a 0任何一个不等于零的数的零指数幂都等于 1;a-p= 1 ap a 0,p 是正整数 任何一个不等零的数 的-pp 是正整
5、数 指数幂,等这个数的 p 指数幂的倒数;9.10 整式的乘法:单项式与单项式相乘:单项式与单项式相乘,把它们的系数、 相同字母分别相乘,对于只在一个单项式里含有的字母,就连同它的指数作为积的一个因式;单项式与多项式相乘:单项式与多项式相乘, 就是依据安排率用单项式去乘多项式的每一项,再把所得的积相加,即;留意:单项式乘多项式实际上是用安排率向单项式相乘转化;多项式与多项式相乘:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加,即 ;第四节、乘法公式内容: 22 意义:两个数的和与这两个数的差的乘积,等于这两个数的平方差;特点:. 左边是两个二项式相乘,这两项
6、中有一项相同,另一项互 为相反数;. 右边是乘式中两项的平方差;. 公式中的和可以使有理数,也可以是单项式或多项式;几何意义:平方差公式的几何意义也就是图形变换过程中面积相等的表达式;名师归纳总结 - - - - - - -第 2 页,共 34 页精选学习资料 - - - - - - - - - 拓展:. 立方和公式:2 2 33;. 立方差公式:2 2 33; 2 2- ;9.12 完全平方公式:内容: 222; 222;意义:两数和的平方,等于它们的平方和,加上它们积的倍;两数差的平方,等于它们的平方和,减去它们积的倍;特点: . 左边是一个二项式的完全平方,右边是一个二次三项式,其 中有
7、两项是公式左边二项式中每一项的平方,另哪一项左边二项式中两项乘积的倍,可简记为“ 首平方,尾 平方,积的倍在中心; ” . 公式中的、可以是单项式,也可以是多项式;推广: . 2222 c; . 333 2 2; . 333 2 2;第五节因式分解因式分解的意义:把一个多项式化为几个整式积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式,即多项式化为几个整式的积;留意:因式分解的要求:. 结果肯定是积的形式,分解的对象是多项式;. 每个因式必需是整式;. 各因式要分解到不能分解为止;因式分解与整式乘法的关系:是两种不同的变形过程,即互逆关系;9.13 提取公因式法:提公因式
8、法分解因式:,这个变形就是提公因式法分解因式;这里的可以代表单项式,也可以代表多项式,称为公因式;确定公因式方法:系数:取多项式各项系数的最大公约数;字母或多项式因式 :取各项都含有的字母或多项式因式的最低次幂;名师归纳总结 - - - - - - -第 3 页,共 34 页精选学习资料 - - - - - - - - - 利用公式法分解因式:. 平方差公式: 22 ;. 完全平方公式: 22 2;22 2;. 立方和与立方差公式: 332 2;33 2 2;留意:公式中的字母、可代表一个数、一个单项式或一个多项式;()挑选使用公式的方法:主要从项数上看,假设多项式是二项式 应考虑平方差或立方
9、和、立方差公式;假设多项式是三项式,可 考虑用完全平方公式;:利用十字交叉线来分解系数,把二次三项式分解 因式的方法叫做十字相乘法;29.16 分组分解法: . 将多项式的项适当的分组后,组与组之间能提公因式或运用公式分解; . 适用范畴:适合四项以上的多项式的分解;分组的标准为:分组后能提公因式或分组后能运用公式;其他方法: . 求根公式法:假 设2+ 的两根是、,2+=-;因式分解的一般步骤及留意问题:对多项式各项有公因式时,应先供应因式;多项式各项没有公因式时,假如是二项式就考虑是否符合平方差 公式;假如是三项式就考虑是否符合完全平方公式或二次三项式的 因式分解;假如是四项或四项以上的多
10、项式,通常采纳分组分解法;分解因式,必需进行到每一个多项式都不能再分解为止;第六节整式除法:同底数幂相除,底数不变,指数相减;任何不等于零的数的零次幂为 1,既:9.18 单项式除以单项式:单项式与单项式相除的法就:单项式与单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有 的字母,就连同它的指数作为商的一个因式;留意:两个单项式相除,只要将系数及同底数幂分别相除即可;只在被除式里含有的字母不不要漏掉;9.19 多项式与单项式相除:名师归纳总结 - - - - - - -第 4 页,共 34 页精选学习资料 - - - - - - - - - 多项式与单项式相除的法就:一
11、般地,多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的 商相加,即+ = + + + ;留意:这个法就的使用范畴必需是多项式除以单项式,反之,单项式除以多项式是不能这样 运算的;整式的混合运算:关键是留意运算次序,先乘方,在乘除,后加减,有括号时,先去小括号,再去中括号,最终去大括号,先做括号里的;内容整理单项式的乘法多项式的乘法因提公因式法幂aman=am+na mn=a mn的abn=anbn单项式的除法乘法公式式公 式 法运分算解a m an=am-n多项式除以单项式第十章分式10.1、1、分式的意义两个整式 A/B 相除,即 A B 时,可以表示为A/B. 假如 B
12、中含有字母,那么A/B 叫做分式; A 叫做分式的分子,B 叫做分式的分母;假如一个分式的分母为零,那么这个分式无意义;10.22、分式的基本性质:即有理式整式整式和分式统称为有理式:分式名师归纳总结 分式的分子和分母同时乘以或除以同一个不为0 的整式,第 5 页,共 34 页分式的值不变;用式子表示为:A/B=A*C/B*C A/B=A C/BC A,B,C 为整式,且B、C 0约分 :把一个分式的分子和分母的公因式约去,这种变形称为分式- - - - - - -精选学习资料 - - - - - - - - - 的约分分式的约分步骤:1假如分式的分子和分母都是或者是几个乘积的形式 ,将它们的
13、公因式约去2分式的分子和分母都是将分子和分母分别,再将公因式约去. 注:公因式的提取方法:取分子和分母系数的,字母取分子和分. 母共有的字母 ,指数取公共字母的最小指数,即为它们的公因式时,一般将一个分式化为最简分式;通分 :把几个异分母分式分别化为与原分式值相等的同分母分式 , 叫做分式的通分;分式的通分步骤 :先求出全部分式分母的最简公分母 ,再将全部分式的分母变为最简公分母 .同时各分式依据分母所扩大的倍数 ,相应扩大各自的分子 . 注 :最简公分母的确定方法 :系数取各因式系数的最小公倍数 ,相同字母的及单独字母的幂的乘积;注 :1约分和通分的依据都是分式的基本性质;2分式的约分和通分
14、都是互逆运算过程;10.3 、分式的运算:分式的乘法法就 :两个分式相乘 ,把分子相乘的积作为积的分子 ,把分母相乘的积作为积的分母 .用字母表示为:a/b * c/d=ac/bd 分式的除法法就 :.两个分式相除 ,把除式的分子和分母颠倒位置后再与被除式相乘:a/b c/d=ad/bc . 除以一个分式,等于乘以这个分式的倒数:a/b c/d=a/b*d/c 异分母分式通分时,关键是确定公分母, 通常取各分母全部因式的最高次幂的积作为公分母,这样的公分母叫做最简公分母;同分母分式加减法就:同分母的分式相加减,分母不变 ,把分子相加减.用字母表示为:a/c b/c=a b/c 异分母分式加减法
15、就:异分母的分式相加减,先通分 ,化为同分母的分式,然后再按同分母分式的加减法法就进行运算.用字母表示为:a/b c/d=ad cb/bd 10.5 分式方程:分式方程的意义 :分母中含有未知数的方程叫做分式方程 . 分式方程的解法 : . 去分母 方程两边同时乘以最简公分母 ,将分式方程化为整式方程; 名师归纳总结 - - - - - - -第 6 页,共 34 页精选学习资料 - - - - - - - - - . 按解整式方程的步骤求出未知数的值 ; . 验根 求出未知数的值后必需验根,由于在把分式方程化为整式方程的过程中,扩大了未知数的取值范畴,可能产生增根 . 内容整理约分分式的性质
16、 通分 第十一章 图形的运动 分 分式运算 乘除法 1、平移定义和规律1平移的定义:在平面内,将一个图形沿某个方向移动肯定的距离,这样的图形运动称 式 加减法为平移 Translation ;平移后各对应点之间的距离叫做图形平移的距离;分式方程关键: a. 平移不转变图形的外形和大小也不会转变图形的方向,但转变图形的位置;b. 图形平移三要素:原位置、平移方向、平移距离;2平移的规律 性质 :经过平移,对应点所连的线段平行且相等,对应线段平行且相等、对应角相等;留意:平移后,原图形与平移后的图形全等;3简洁的平移作图:平移作图要留意:方向;距离; 整个平移作图, 就是把整个图案的每一个特点点按
17、 肯定方向和肯定的距离平行移动;2、旋转的定义和规律1旋转的定义:在平面内,将一个图形饶一个定点沿某个方向转动一个角度,这样的运动叫做图形的旋转Circumrotate ;这个定点称为旋转中心;转动的角称为旋转角;关键: a. 旋转不转变图形的外形和大小但会转变图形的方向,也转变图形的位置;b. 图形旋转四要素:原位置、旋转中心、旋转方向、旋转角;2旋转的规律 性质 :名师归纳总结 经过旋转, 图形上的每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对第 7 页,共 34 页应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等;旋转前后两个图形的对应线段相等、对应角相等;
18、 - - - - - - -精选学习资料 - - - - - - - - - 留意:旋转后,原图形与旋转后的图形全等;3简洁的旋转作图:旋转作图要留意:旋转方向;旋转角度;整个旋转作图,就是把整个图案的每一 个特点点绕旋转中心按肯定的旋转方向和肯定的旋转角度旋转移动;3、图案的分析与设计 第一找到基本图案,然后分析其他图案与它的关系,即由它作何种运动变换而形成; 图案设计的基本手段主要有:轴对称、平移、旋转三种方法;4、旋转对称图形:把一个图形围着一个定点旋转一个角度 后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角旋转角 满意0 0 时,a 2=a
19、 ,a 2 =a. (2) 当 a0 时,a 2=a; 2当 a0 时,a =12.3 立方根和开立方假如一个数的立方等于 a,那么这个数叫做 a 的立方根 ,用“3 a ” 表示,读作“三次根号 ” ;3a 中的 叫做被开方数, “ 3” 叫做根指数;求一个数 的立方根的运算叫做 开立方 ;正数的立方是一个正数,负数的立方是一个负数,零的立方等于零,所以正数的立方根是一个正数,负数的立方根是一个负数,零的立方根是零;任意一个实数都有立方根,而且只有一个立方根;n 次方根假如一个数的 n 次方 n 是大于 1 的整数 等于 ,那么这个数叫做 的 n 次方根, 当 n 为奇数时,这个数为 的奇次
20、方根;当 n 为偶数时,这个数为 的偶次方根求一个数 的 n 次方跟的运算叫做 实数 的奇次方根有且只有一个,用“开 n 次方, 叫做 被开方数, n 叫做根指数;n a ” 表示,其中被开方数 是任意一个 实数 ,根指数 n 是大于 1 的奇数;n a ” 表示,负 n 次方根用 n=2 时,在n a 中省略 n正数 的偶次方根有两个,它们互为相反数,正n 次方根用“ na ” 表示,其中被开方数 0,根指数 n 是正偶数当负数的偶次方根不存在;零的 n 次方根等于零,表示为“n a ” 读作“n 次根号 ”n 0 =0第三节实数的运算有理数范畴内肯定值、相反数意义:一个实数在数轴上所对应的
21、点到原点的距离叫做这个数的肯定值;实数 a 的肯定值记作 .肯定值相等,符号相反的两个数记作互为相反数;名师归纳总结 零的相反数是零;非零实数 的相反数是 ;第 10 页,共 34 页- - - - - - -精选学习资料 - - - - - - - - - 实数大小的比较:负数小于零;零小于正数;两个正数,肯定值大的数较大;两个负数,肯定值大的数较小;从数轴上看,右边的点所表示的数总比左边的点所表示的数大;两点间的距离:在数轴上,假如点A 、点 B 所对应的数分别为、b,那么A、B 两点的距离AB= b .12.6 实数的运算设 0,b0,可知=; 2 2=b;依据平方根的意义,得同理:=近
22、似数与精确数的接近程度即近似程度;对近似程度的要求,叫做精确度;对于一个近似数,从左边第一个不是零的数字起,往右到末位数字为止的全部数字,叫做这 个近似数的有效数字;第四节 分数指数幂 分数指数幂=0=0 其中 m、n 为正整数, n1.有理数指数幂有以下性质:设 b,b0,P、q 为有理数,那么 1=,= 2 3名师归纳总结 - - - - - - -第 11 页,共 34 页精选学习资料 - - - - - - - - - 本章小结有理数实数的分类无理数实数 用数轴上的点表示数运算法就及运算性质实数的运算近似数及近似运算数的开方分数指数幂有理数指数幂运算性质第十三章 相交线、平行线第 1
23、节 相交线13.1 邻补角,对顶角相交线的定义:在同一平面内,假如两条直线只有一个公共点,那么这两条直线叫做 相交线 ;对顶角的定义:一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做 对顶角 ;对顶角的性质:对顶角相等;邻补角的定义:有公共顶点和一条公共边,并且互补的两个角称为 邻补角 ;邻补角的性质:邻补角互补;垂线的定义:垂直是相交的一种特殊情形,两条直线相互 线的 垂线 ,它们的交点叫做 垂足 ;垂线的性质:垂直 ,其中的一条直线叫做另一条直性质 1:过一点有且只有一条直线与已知直线垂直;性质 2:垂线段最短 ;点到直线的距离:名师归纳总结 - - - - - - -第 12
24、页,共 34 页精选学习资料 - - - - - - - - - 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;同位角:两个角都在两条被截线同侧,并在截线的同旁,这样的一对角叫做 同位角;内错角:两个角都在两条被截线之间,并且在截线的两旁,这样的一对角叫做 内错角 ;同旁内角:两个角都在两条被截线之间,并且在截线的同旁,这样的一对角叫做 同旁内角 ;平行线的概念在同一平面内,不相交的两条直线叫做平行线;平行公理: 经过直线外一点,有且只有一条直线与已知直线平行;平行公理的推论:假如两条直线都和第三条直线平行,那么这两条直线也平行;通过操作实践,所得到的结果说明垂线有这样的基本性质:在
25、平面内 经过直线上或直线外地一点作已知直线的垂线可以作一条,并且只能作一条;联结直线外一点与直线上各点得全部线段中,垂线段最短;简洁地说:垂线段最短;直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离;13 3 同位角,内错角,同旁内角三线八角第 2 节 平行线13.4 平行线的判定两条直线被第三条直线所截,假如同位角相等,那么这两条直线平行;同位角相等,两直线平行 平行线具有以下基本性质:经过直线外地一点,有且只有一条直线与已知直线平行;两条直线被第三条直线所截,假如内错角相等,那么这两条直线平行;内错角相等,两直线平行 两条直线被第三条直线所截,假如同旁内角互补,那么这两条直线平行
26、;同旁内角互补,两直线平行13.5 平行线的性质两条平行线被第三条直线所截,同位角相等;两直线平行,同位角相等 两条平行线被第三条直线所截,内错角相等;两直线平行,内错角相等 两条平行线被第三条直线所截,同旁内角互补;两直线平行,同旁内角互补 假如两条直线都与第三条直线平行,那么这两条直线也相互平行;对于直线 a 、 b 、 c,假如a/b,b/c,那么a /c;被称为平行的传递性名师归纳总结 - - - - - - -第 13 页,共 34 页精选学习资料 - - - - - - - - - 两条平行线中,任意一条直线上的全部点到另一条直线的距离都是一个定值,这个定值叫做这两条平行线间的距离
27、;第十四章三角形第 1 节 三角形的有关概念与性质14.1 三角形的有关概念三角形的高,中线,角平分线锐角三角形,直角三角形,钝角三角形,不等边三角形,等腰三角形,等边三角形14.2三角形的内角和;180 ;三角形的内角和等于三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于任何一个与它不相邻的内角;三角形的外角和等于 360 ;第 2 节 全等三角形14.3 全等三角形的概念与性质能够重合的两个图形叫做 全等形 ;两个三角形是全等形,就说它们是 全等三角形 ;两个全等三角形,经过运动后肯定重合,相互重合的顶点叫做 对应顶点 ;相互重合的边叫做 对应边 ;相互重合的角叫做 对应
28、角 ;全等三角形的对应边相等,对应角相等;14.4 全等三角形的判定判定方法 1 在两个三角形中,假如有两条边及它们的夹角对应相等,那么这两个三角形全等简记为 S.A.S;判定方法 2 在两个三角形中,假如有两个角及它们的夹边对应相等,那么这两个三角形全等简记为 A.S.A ;判定方法 3 在两个三角形中,假如有两个角及其中一个角的对边对应相等,那么这两个三角形全等简记为 A.A.S ;判定方法 4 在两个三角形中,假如有三条边对应相等,那么这两个三角形全等简记为S.S.S;斜边和一条直角边对应相等的两个直角三角形全等,简写成“ 斜边、直角边” 和“ HL”;、不能识别两个三角形全等,识别两个
29、三角形全等时,必需有边的参加,名师归纳总结 - - - - - - -第 14 页,共 34 页精选学习资料 - - - - - - - - - 假如有两边一角对应相等时,角必需是两边的夹角;三角形全等的证明思路找夹角. 已知两边 找直角找另一边找边的对角. 已知一边一角边为角的邻边找夹角的另一边找夹边的另一角边为角的对边找任意一角. 已知两角 找夹边找任意一边第 3 节 等腰三角形14.5等腰三角形的性质;等腰三角形的两个底角相等简称“ 等边对等角”等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合简称为“ 等腰三角形的三线合一”;等腰三角形是轴对称图形,它的对称轴是顶角平分线所在的直
30、线;14.6 等腰三角形的判定假如一个三角形有两个角相等,那么这两个角所对的边也相等,这个三角形是等腰三角形简称为“ 等角对等边”;14.7 等边三角形等边三角形是特殊的等腰三角形,它的三边都相等;等边三角形的性质:等边三角形的每个内角等于;60 ;判定等边三角形的方法:1三个内角都相等的三角形是等边三角形; 2有一个角等于;60 的等腰三角形是等边三角形;、不能识别两个三角形全等,识别两个三角形全等时,必需有边的参加,如果有两边一角对应相等时,角必需是两边的夹角;名师归纳总结 - - - - - - -第 15 页,共 34 页精选学习资料 - - - - - - - - - 1、线段的垂直
31、平分线:定理:线段垂直平分线上的点与线段两端距离相等;与线段两端距离相等的点在这条线段的垂直平分线上;留意:三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等;2、等腰三角形:性质:;等腰三角形两个底角相等,简称“ 等边对等角”等腰三角形顶角的平分线垂直平分底边 推论:等边三角形三个内角相等,每一个内角都等于 60 ;定理 :假如一个三角形有两个角相等,那么这两个角所对的边相等,简称“ 等角对等边”;推论: 三个角都相等的三角形是等边三角形;有一个角是 三角形;60 的等腰三角形是等边定理 :在直角三角形中,假如一个锐角等于 30 ,那么它所对的直角边等于斜边的一半;3、角的平分
32、线:定理 :角平分线上任意一点到角的两边的距离相等;在一个角的内部,到角的两边距离相等的点在这个角的平分线上;名师归纳总结 - - - - - - -第 16 页,共 34 页精选学习资料 - - - - - - - - - 第十五章 平面直角坐标系第1节 平面直角坐标系15.1 平面直角坐标系在平面内取一点,过点 画两条相互垂直的数轴,且使它们以点 为公共原点;这样,就在平面内建立了一个 直角坐标系 ;通常,所画的两条数轴中,有一条是水平放置的,它的正方向向右,这条数轴叫做 横轴记作 轴;另一条是铅直放置的,它的正方向向上,这条轴叫做 纵轴记作 轴;如下图, 记作平面直角坐标系;点 叫做 坐
33、标原点 简称原点,轴和 轴统称为 坐标轴 ;在平面直角坐标系 xOy 中,点 P 所对应的有序实数对ab 叫做点 P 的坐标,记作 Pa,b ,其中 叫做横坐标, b 叫做纵坐标;象限的划分:经过点 Aa,b且垂直于 x 轴的直线可以表示为直线可以表示为直线 y=b.第2节直角坐标平面内点的运动 15.2 直角坐标平面内点的运动点的坐标x=, 经过点 Aa,b 且垂直于 y 轴的直线有了平面直角坐标系,平面内的点就可以用一个有序数对来表示,a 点对应 x 轴的数值为横坐标, b 点对应 y 轴的数值为纵坐标,有序数对就叫做 在直角坐标平面内,点 A 的坐标 ,记作 a,b;平行于 x 轴的直线
34、上的两点A,y 、B,y 的距离AB= ;Cx,、 Dx, 的距离平行于 y 轴的直线上的两点CD= .点的平移名师归纳总结 - - - - - - -第 17 页,共 34 页精选学习资料 - - - - - - - - - 在平面直角坐标系中,m0将点 x,y向右平移m个单位长度,可以得到对应点xm ,y;将点 x,y向左平移m个单位长度,可以得到对应点xm, y;将点 x,y向上平移m个单位长度,可以得到对应点x,y m;将点 x,y向下平移m个单位长度,可以得到对应点x,y m;坐标平面图坐标平面图是由两条坐标轴和四个象限构成的,也可以说坐标平面内的点可以分为六个区域: x 轴上, y 轴上,第一象限,其次象限,第三象限,第四象限;在这六个区域中,除 x 轴与 y 轴的一个公共点原点之外,其他区域之间都没有公共点;建立了直角坐标系的平面叫做 以用有序实数对来表示;直角坐标平面 简称坐标平面 ;这样,原先平面内的点都可在平面直角坐标系中,点所对应的有序实数对叫做点的坐标,记作,其中叫做横坐标,叫做纵坐标;原点的坐标是;的坐标是,的坐标是在平面直角坐标系中对称点的特点:关于 x 成轴对称的点的坐标,横坐标相同,纵坐标互为相反数;横同纵反关于