成人高考专升本高等数学二公式定理全集.doc

举报
资源描述
,. 第一章节公式 1、数列极限的四则运算法则 如果那么                           推广:上面法则可以推广到有限多个数列的情况。例如,若,,有极限,则: 特别地,如果C是常数,那么 2、函数极限的四算运则 如果那么 推论设都存在,为常数,为正整数,则有: 3、无穷小量的比较: 第二章节公式 1.导数的定义: 函数y=f(x)在x=x0处的瞬时变化率是 = ,我们称它为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0即f′(x0)= . 2.导数的几何意义 函数f(x)在x=x0处的导数就是切线的斜率k,即k= =f′(x0). 3.导函数(导数) 当x变化时,f′(x)便是x的一个函数,我们称它为f(x)的导函数(简称导数),y=f(x)的导函数有时也记作y′,即f′(x)=y′= . 4.几种常见函数的导数 (1)c′=0(c为常数),(2)(xn)′=nxn-1(n∈Z),(3)(ax)′=axlna(a>0,a1), (ex)′=ex (4)(lnx)′=,(logax)′=logae=(a>0,a1) (5)(sinx)′=cosx,(6)(cosx)′=-sinx (7) , (8) (9) , (10) (11) , (12) 5.函数的和、差、积、商的导数 (uv)′=u′v′,(uv)′=u′v+uv′ ′=,(ku)′=cu′(k为常数). (uvw)′=u′vw+uv′w+ uvw′ 微分公式: (1) (7) , (8) (9) , (10) (11) , (12) 6.微分的四算运则 d(uv)=dudv, d(uv)=v du+udv d(ku)=kdu(k为常数). 洛必达法则:在一定条件下通过分子分母分别求导,再求极限来确定未定式的值的方法。 7.导数的应用: =0 的点为函数的驻点,求极值; (1)时,;,,; (2)时,;,,; (3) ; =0 的点为函数的拐点,求凹凸区间; 第三章知识点概况 不定积分的定义:函数f(x)的全体原函数称为函数f(x)的不定积分,记作,并称为积分符号,函数为被积函数,为被积表达式,x为积分变量。 不定积分的性质: 基本积分公式: 换元积分(凑微分)法: 1. 凑微分。对不定积分,将被积表达式g(x)dx凑成 2. 作变量代换。令3.用公式积分,,并用换式中的u 常用的凑微分公式主要有: 分部积分法:适用于分部积分法求不定积分的常见题型及u和dv的选取法 上述式中的P(x)为x的多项式,a,b为常数。 一些简单有理函数的积分,可以直接写成两个分式之和,或通过分子加减一项之后,很容易将其写成一个整式与一个分式之和或两个分式之和,再求出不定积分。 定积分: (1)定积分的值是一个常数,它只与被积函数f(x)及积分区间[a,b]有关,而与积分变量的字母无关,即应有 (2)在定积分的定义中,我们假定a0,称      类似地,如果P(A)>0,则事件B对事件A的条件概率为    概率的乘法公式         乘法公式可推广到有限多个事件的情况,例如对事件A,B,C,有    事件的独立性   一般地说, P(A︱B)≠P(A),即说明事件B的发生影响了事件A发生的概率。若P(A︱B)≠P(A),则说明事件B的发生在概率意义下对事件A的发生无关,这时称事件A,B相互独立。   定义:对于事件A,B,若P(AB)=P(A)P(B) ,则称事件A与事件B相互独立。独立试验序列概型   在相同的条件下,独立重复进行n次试验,每次试验中事件A可能发生或可能不发生,且事件A发生的概率为p,则在n次试验中事件A恰好发生k次的概率为    一维随机变量及其概率分布 (一)随机变量   1.随机变量   定义:设Ω为样本空间,如果对每一个可能结果,变量X都有一个确定的实数值与之对应,则称X为定义在Ω上的随机变量,简记作。   2.离散型随机变量   定义:如果随机变量X只能取有限个或无限可列个数值,则称X为离散型随机变量。   (二)分布函数与概率分布   1.分布函数   定义:设X是一个随机变量,x是任意实数,则函数称为随机变量X的分布函数。   分布函数F(x)有以下性质:      (2)F(x)是x的不减函数,即对任意      (4)F(x)是右连续的,即   (5)对任意实数a<b,有P{a<X≤b}=F(b)-F(a)   2.离散型随机变量的概率分布   则称上式为离散型随机变量X的概率分布(或概率函数或分布列)。   离散型随机变量X的概率分布也可以用下列列表形式来表示:         3.分布函数与概率分布之间的关系   若X为离散型随机变量,则。 随机变量的数字特征   1.数学期望   (1)数学期望的概念   定义:设X为离散型随机变量,其概率函数为   若级数绝对收敛,则称为X的数学期望,简称期望或均值,记作EX,即   (2)数学期望的性质  ①若C为常数,则E(C)=C   ②若a为常数,则E(aX)=aE(X)   ③若b为常数,则E(X+b)=E(X)+b   ④若X,Y为随机变量,则E(X+Y)=E(X)+E(Y)   2.方差   (1)方差的概念   定义:设X为随机变量,如果存在,则称为X的方差,记作DX,即   方差的算术平方根称为均方差或标准差,   对于离散型随机变量X,如果X的概率函数为,   则X的方差为   (2)方差的性质   ①若C为常数,则D(C)=0   ②若a为常数,则   ③若b为常数,则D(X+b)=D(X)   ④
展开阅读全文
相关搜索
温馨提示:
taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。

当前位置:首页 > 教育专区 > 教案示例


本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁