资源描述
,.
第一章节公式
1、数列极限的四则运算法则
如果那么
推广:上面法则可以推广到有限多个数列的情况。例如,若,,有极限,则:
特别地,如果C是常数,那么
2、函数极限的四算运则
如果那么
推论设都存在,为常数,为正整数,则有:
3、无穷小量的比较:
第二章节公式
1.导数的定义:
函数y=f(x)在x=x0处的瞬时变化率是
= ,我们称它为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0即f′(x0)= .
2.导数的几何意义
函数f(x)在x=x0处的导数就是切线的斜率k,即k= =f′(x0).
3.导函数(导数)
当x变化时,f′(x)便是x的一个函数,我们称它为f(x)的导函数(简称导数),y=f(x)的导函数有时也记作y′,即f′(x)=y′= .
4.几种常见函数的导数
(1)c′=0(c为常数),(2)(xn)′=nxn-1(n∈Z),(3)(ax)′=axlna(a>0,a1), (ex)′=ex
(4)(lnx)′=,(logax)′=logae=(a>0,a1)
(5)(sinx)′=cosx,(6)(cosx)′=-sinx
(7) , (8)
(9) , (10)
(11) , (12)
5.函数的和、差、积、商的导数
(uv)′=u′v′,(uv)′=u′v+uv′
′=,(ku)′=cu′(k为常数).
(uvw)′=u′vw+uv′w+ uvw′
微分公式:
(1)
(7) , (8)
(9) , (10)
(11) , (12)
6.微分的四算运则
d(uv)=dudv, d(uv)=v du+udv
d(ku)=kdu(k为常数).
洛必达法则:在一定条件下通过分子分母分别求导,再求极限来确定未定式的值的方法。
7.导数的应用:
=0 的点为函数的驻点,求极值;
(1)时,;,,;
(2)时,;,,;
(3) ;
=0 的点为函数的拐点,求凹凸区间;
第三章知识点概况
不定积分的定义:函数f(x)的全体原函数称为函数f(x)的不定积分,记作,并称为积分符号,函数为被积函数,为被积表达式,x为积分变量。
不定积分的性质:
基本积分公式:
换元积分(凑微分)法:
1. 凑微分。对不定积分,将被积表达式g(x)dx凑成
2. 作变量代换。令3.用公式积分,,并用换式中的u
常用的凑微分公式主要有:
分部积分法:适用于分部积分法求不定积分的常见题型及u和dv的选取法
上述式中的P(x)为x的多项式,a,b为常数。
一些简单有理函数的积分,可以直接写成两个分式之和,或通过分子加减一项之后,很容易将其写成一个整式与一个分式之和或两个分式之和,再求出不定积分。
定积分:
(1)定积分的值是一个常数,它只与被积函数f(x)及积分区间[a,b]有关,而与积分变量的字母无关,即应有
(2)在定积分的定义中,我们假定a0,称
类似地,如果P(A)>0,则事件B对事件A的条件概率为
概率的乘法公式
乘法公式可推广到有限多个事件的情况,例如对事件A,B,C,有
事件的独立性
一般地说, P(A︱B)≠P(A),即说明事件B的发生影响了事件A发生的概率。若P(A︱B)≠P(A),则说明事件B的发生在概率意义下对事件A的发生无关,这时称事件A,B相互独立。
定义:对于事件A,B,若P(AB)=P(A)P(B) ,则称事件A与事件B相互独立。独立试验序列概型
在相同的条件下,独立重复进行n次试验,每次试验中事件A可能发生或可能不发生,且事件A发生的概率为p,则在n次试验中事件A恰好发生k次的概率为
一维随机变量及其概率分布
(一)随机变量
1.随机变量
定义:设Ω为样本空间,如果对每一个可能结果,变量X都有一个确定的实数值与之对应,则称X为定义在Ω上的随机变量,简记作。
2.离散型随机变量
定义:如果随机变量X只能取有限个或无限可列个数值,则称X为离散型随机变量。
(二)分布函数与概率分布
1.分布函数
定义:设X是一个随机变量,x是任意实数,则函数称为随机变量X的分布函数。
分布函数F(x)有以下性质:
(2)F(x)是x的不减函数,即对任意
(4)F(x)是右连续的,即
(5)对任意实数a<b,有P{a<X≤b}=F(b)-F(a)
2.离散型随机变量的概率分布
则称上式为离散型随机变量X的概率分布(或概率函数或分布列)。
离散型随机变量X的概率分布也可以用下列列表形式来表示:
3.分布函数与概率分布之间的关系
若X为离散型随机变量,则。
随机变量的数字特征
1.数学期望
(1)数学期望的概念
定义:设X为离散型随机变量,其概率函数为
若级数绝对收敛,则称为X的数学期望,简称期望或均值,记作EX,即
(2)数学期望的性质
①若C为常数,则E(C)=C
②若a为常数,则E(aX)=aE(X)
③若b为常数,则E(X+b)=E(X)+b
④若X,Y为随机变量,则E(X+Y)=E(X)+E(Y)
2.方差
(1)方差的概念
定义:设X为随机变量,如果存在,则称为X的方差,记作DX,即
方差的算术平方根称为均方差或标准差,
对于离散型随机变量X,如果X的概率函数为,
则X的方差为
(2)方差的性质
①若C为常数,则D(C)=0
②若a为常数,则
③若b为常数,则D(X+b)=D(X)
④
展开阅读全文
相关搜索