小学数学课例分析与研究.doc

举报
资源描述
*- 小学数学计算教学的课例研究 课例研究”是在新课改深入开展的背景下产生的一种校本教研活动方式,是一种以“课例”为载体的教学研究,它围绕如何上好一节课而展开,研究渗透或融入教学过程,贯穿在备课、设计、上课、评课等教学环节之中,活动方式以同伴成员的沟通、交流、讨论为主,研究成果的主要呈现样式是文本的教案和案例式的课堂教学。也是一种“教学与研究的一体化”、十分行之有效的提高教师专业素养和教学质量的手段。 小学生学习计算时,一般存在以下困难: (1) 难以理解和讲清算理。 (2) 学生算法掌握基本停留在记忆各种算法程序上,优化意识、估算意识不强,计算灵活性也较差。 (3) 学生对算法学习的认识存在思维偏差——算法课的学习通常就是实现教师给出的方法。主动探究算法的经验较少,能力较弱。 对于计算教学,新课程标准明确指出:让学生“经历抽象出数的过程,积累数感;在从实际情境提出计算的过程中,积累四则运算的感性认识;通过尝试,探究计算方法。所以我们一线教师对课堂教学案例的分析与研究是非常必要的。 一、“除数是小数的除法”同课异构课堂实录案例分析与研究 1、初次实践 课堂实录节选 师:出示(复习引入) 12030=4 4.515=0.3 123= 0.451.5= 1.20.3= 0.0450.15= (教师先引导学生对除数是小数的除法推演结果进行验证,然后指出商不变性质在小数除法中同样适用。) 师:(创设情境问题,为学生提供一个自主解决问题的平台。) (1)、买9本练习本共10.8元,平均每本练习本多少元? (2)、一块橡皮 0.7 元,用 10.5 元可以买几块橡皮? (3)、小气球每个 0.15 元,1.8元可以买几个小气球? 师:能列出解答这3个问题的算式吗? 根据学生回答板演:10.89 10.5 0.7 1.8 0.15 (学生独立完成第1题的竖式计算。) 师:除数是整数的小数除法,我们已会计算,那么,象10.5 0.7、1.8 0.15这样的除数是小数的除法怎么计算呢?今天我们就着重研究除数是小数的除法。揭示课题:除数是小数的除法。 提问:有没有办法把除数是小数的除法转化成除数是整数的除法呢? (此时,大部分学生想到了利用商不变性质解决新问题……) l 执教教师认为:除数是小数的除法计算关键是先利用商不变性质将它转化成除数是整数的小数除法,再按除数是整数的小数除法法则计算。因此,首先应通过复习激活相关知识——商不变性质,来引发新问题解决思路——利用商不变性质把除数是小数的除法转化为除数是整数的小数除法。 l 实践效果:由于课始出示了一组利用商不变性质进行填空的习题,使大部分学生自然想到了借助商不变性质把小数除法转化成整数除法,课中没有多种个性化的问题解决方法出现。在教师的引导下,学生逐步掌握了除数是小数的除法的竖式计算,整堂课上得比较顺利。 l 课题组成员讨论质疑:当学生有能力自主获得新问题解决思路时,教师是否还有必要进行思路引导?教师预设的多种解决问题的方法没有出现的原因是什么?课题组成员通过讨论形成共识:第一层次的填空题,虽然只是表明了商不变性质在小数计算中同样适用,但同时也明显的暗示了学生新问题解决的基本思路——用商不变性质可以把除数是小数的除法转化成除数是整数的小数除法来解决。虽然知识技能目标达成度较高,但教师在激活旧知,使学生判断推理符合逻辑的同时,将高水平认知要求降低为低水平的认知要求,即缩小了学生思考的空间,降低了学生思维的深度。 l 讨论建议:过多的知识铺垫,有时会不利于学生深层次的思维。学习除数是小数的除法,关键是转化思想的运用,同时,“除数是小数除法”的学习内容,也是学生用以获得数学转化思想的极好素材。因此,建议采用减少教学铺垫,直接从同类的思想方法引入,让学生自己发现问题,并寻找解决问题的方法。 2、第二次实践 课堂实录节选 谈话引入:同学们,前段时间学习了小数乘法,回忆一下,我们是怎样获得小数乘法的计算方法的?利用这种转化思想,可以把新问题转化成我们学过的问题,从而解决新问题。那么,同学们能否继续用这种转化思想解决除数是小数的除法问题呢? 出示题目: 1.80.15 1.020.8 师:今天我们就研究除数是小数的除法计算方法,随即板书课题:除数是小数的除法。 (学生尝试解决第一题后板演并交流。) 板演: 生2:1.80.15= 1.2 1.2 0.15)1.8 15 30 30 0 40 0 生1:1.80.15=12 1.2 15)18 15 30 30 0 40 0 生3:1.80.15=0.12 1815=1.2 因为 被除数扩大10倍,除数扩大100倍,所以商缩小10倍。 (学生大部分把小数除法转化为整数除法来计算,但通过竖式计算,产生答案各不同。) l 实践效果: 学生在教师的谈话引导下,利用原认知结构中的已有知识——小数乘法计算的转化方法(先把小数看作整数计算,再确定小数点的位置)进行类比思考:除数是小数的除法计算也可以先把小数看作整数计算,再确定商的小数点的位置。但是在怎样确定商的小数点的位置时,遇到新的学习困难——难以找到一个统一、便捷的方法。因此,影响了整堂课的教学效果。 l 课题组讨论质疑:学习除数是小数的除法,关键是转化思想的运用,因此,认为在课堂引入时,从同类的思想方法引入比较合理。但为什么不能达成预期教学效果呢?课题组成员分析认为:在课前分析中忽视了对学生认知能力水平的分析。 “数学转化思想”对一个刚开始学小数除法的小学生来说还只是一个比较抽象的概念,也就是说,目前的学生并不能很清晰的认识数学转化思想的本质所在。那么,当教师从“回忆一下,我们是怎样获得小数乘法的计算方法的”来引导学生“利用这种转化思想,可以把新问题转化成我们学过的问题,从而解决新问题”时,学生对于转化思想的演绎更多的是基于原认知结构中的已有经验——小数乘法计算的转化方法(先把小数看作整数计算,再确定积的小数点的位置)进行类比思考:除数是小数的除法计算也可以先把小数看作整数计算,再确定商的小数点的位置。在这样的思路引导下,学生探究的焦点集中在“如何确定商的小数点的位置?”由于利用小数乘法计算的转化方法迁移至除数是小数的除法计算方法,在怎样确定商的小数点的位置时,却难以找到一个统一、便捷的方法,且带出更多新问题,不能达到利用“化新为旧”的思想方法解决新问题的初衷,因此,影响了课堂效益。 l 讨论建议:通过两次的实践、交流与反思,课题组成员普遍感受到,课堂教学情境创设、任务提出,必须基于学生的生活经验、知识经验和认知能力发展水平。由于实践课中学生的认知状态还处于:能在问题的驱动下想到某一种解决问题的具体办法,但有意识的运用“化新为旧”的思考策略来解决问题的意识是不强的(也就是新情境问题解决的策略性知识掌握和运用能力不强)这样一种水平状况。因此,第二次实践中的学习任务给出,就显得过高估计了学生的认知发展水平。而初次实践中的复习引入,又过低估计学生的能力发展水平。所以,建议在第三次实践中,剔除“复习引入”部分,直接从学生生活经验、知识经验和认知能力水平出发,创设一系列学生感兴趣和真实的问题情境,让学生从自身经验出发去解决问题,再通过交流协商,形成共识,逐步建构新算法。 3、第三次实践 课堂实录节选 师:在国庆节期间,你们爸爸妈妈一定给了不少零用钱对吗,你用它买过东西吗? 生:买过…… 师:小明和他的弟弟在国庆期间也带了自己的零用钱去超市买东西,小明有10.5元,他去超市选购练习本,每本0.7元。你知道他能卖多少本练习本? (学生独立进行计算后板演并交流。) 生3:10.50.7=15(个) 15 7)105 7 35 35 0 0 生2: (10.510)(0.710) =1057 =15(个) 生1: 10.50.7=15(个) 10 10 105 7=15(个) 板演: 生6: 我先不看它们的小数点,使他们变成整数,除好后,看它们一共有几位小数,商就有几位小数,所以商是0.15。 1057=15 10.50.7=0.15 生4: 10.50.7=1.5 1. 5 0.7)10. 5 7 3 5 3 5 0 生5: 10.50.7=15(个) 1 5 0.7 )10.5 7 3 5 3 5 0 交流: 生1:我是把10.5和0.7都化成整数,都扩大10倍,因为商不变的性质里面说被除数和除数同时乘以或除以同样的数,结果不变。所以,10.50.7与1057结果就相等,然后再除,结果是15。 (此时学生们普遍点头表示赞同这位学生的想法。) 生2:我与(生1)想法是一样的,只是写法不同。 生3:我是把10.5和0.7同时乘以10,它的商不变,然后再列竖式计算,结果是15。 生4:我开始和前面的同学想法是一样的,后来想到书上计算法则说商的小数点要和被除数的小数点对齐,所以就在商上点上了小数点。 师:他这样想有道理吗? 生3:我认为不对,10.57才等于1.5,现在10.50.7先变成1057,小数点位置改变了,商的小数点就不能再与原来的小数点位置对齐,应与改变后被除数的小数点对齐。 (听了生3的解释,生4点头表示赞同。) 生5:我跟(生3)的方法相同,也是将它们同时乘以10,不过我是用图示把它表示了出来。 师:你能上来向大家介绍,你是怎样用图示表示转化过程的? 生5:我先把0.7的小数点向右移一位,(该生把0.7的0划去,并用“ ”表示小数点移动了一位。)再把10.5的小数点也向右移一位,这样变成1057,算出商是15。 生6:我原来的想法是和乘法一样,先不看它们的小数点,相除,再看一共有几位小数,再点上小数点。 师:你也是想利用我们以前学过的知识来解决这个问题,对吗? 哪为什么结果不对,问题出在哪儿? 生6: 我想错了,因为在除法中,被除数和除数都扩大10倍,商是不变的。 (此时,同学们各抒己见,有条理的表达自己的想法,同时在倾听交流中完善自己的想法。) 师:听了刚才几位同学的介绍,有没有发现他们在解决问题时思考方法上有什么共同的地方? 生1:把两个数都扩大成整数。 师:为什么要扩大成整数? 生1:因为整数除法我们已经学过了。 生2:我觉得他们都利用了商不变性质。 师:都利用了商不变的性质,都想办法把这个新问题转化成我们已经学过的知识去解决,是不是这样。那么,请你们象生5那样把下面两题转化成能用我们学过的除法计算方法来解决。 出示:0.18)1.5 0.18)3.618 此时对于第2题学生出现两种转化方法:0.18)3.618 0.180)3.618 (当同学们通过计算,认可两种转化方法都正确后,教师再让学生选择一种较简便的转化方法计算0.5)1.725 ,结果选择第2种方法的速度比选择第一种方法的速度要慢许多,此时学生才从实例中体验到,只要将除数是小数的除法转化成除数是整数的小数除法,即可解决问题。) …… l 实践效果:通过情境创设——独立思考——交流协商——形成共识这么一种活动模式,使学生在课堂有限的时间内,不仅建构了正确算法,同时,也有更多的机会学习有条理的思考,学会清晰简明的表达思考过程,学习有意识的用数学思想方法分析问题和解决问题的策略。因此,本次实践中,学生的认知性目标、过程性目标和情感性目标达成度相对较高。 l 课题组讨论反思:通过对“除数是小数的除法”教学内容的同课异构与反思,课题组成员普遍体会到:(1)对于课前引导性材料运用,有时不能简单的用好与坏来认定。例如,初次实践中,复习引入的引导性材料,它的优势是能帮助学生激活旧知,引发思路。如果你所面对的学生认知能力发展水平较弱,那么,就需要教师给予搭建知识建构的脚手架——激活旧知,引发思路。如果学生的认知能力水平较强,已具备一定的面对新的情境问题,能自主调用认知结构中已具备的知识和策略解决问题的能力,那么,第三次实践的引导性材料更具有适切性。而第二次实践的引导性材料开放度较大,一般来说,它适应于已具备一定逻辑推理能力和数学转化思想方法,且具有一定的用数学思想方法解决问题的多次经验的学生。因此,教师在提供引导性学习材料时,深入了解学生的知识基础和认知能力水平是必不可少的重要环节。(2)为了约简学生自主建构的思维表达形式,使得新形式更适应新的学习内容表达的需要,教师必须引导学生在协商中逐步建构。例如,第三次实践中,由于学生知识经验、生活经验都存在个体差异,观察思考问题的角度也会不同,所以,产生了多种不同的问题解决方法和不同的表达形式。此时,教师首先是充分尊重学生的个性特征,允许学生从不同的角度认识问题,采用不同的方式表达自己的想法,教师给予学生独立思考和解决问题的时间和空间,但并不简单的追求算法多样化,而是在多样化的基础上,引导学生表达自己的想法,倾听别人的想法,感悟“化新为旧”的数学思想方法(转化思想渗透),在交流协商中优化问题解决策略,从而帮助学生逐步建构新算法。(3)学生理解并接受新的形式,并不表示能正确运用其解决问题。因此,必须通过一定量的针对练习已达到对新形式的巩固和优化,并将其纳入认知结构中。 二、案例:“转化思想”在小学数学计算教学中的运用。 1、转化思想在认识数的意义时的应用。 认识一类新的数时,我们往往会运用转化的思想,将其转化为可视化的图形。 如,认识整数时,我们就用上了小棒,用1根小棒来表示“一”,用10棒小捆成一捆来表“等再如,认识负数时,我们就运用到数轴来帮助学生直观地比较负数与0以及正数的大小关系。这里都运用到“化抽象为直观”的思想。 2、转化思想在异分母分数加、减法中的应用。 异分母分数加减法是在学生学习了同分母分数加减法的基础上进行的。学生在计算是,首先要将异分母分数转化成同分母分数,然后才能进行加减运算。这里的转化体现的是“化异为同”的思想。 3、转化思想在小数乘、除法中的应用 在学习小数乘、除法之前,学生已经掌握了整数乘、除法的知识,学习这部分知识的的个主要思想就是将小数乘、除法这个新的知识转化成已经学过的整数成熟乘除法的旧知识。 如:在计算0.80.03时,我们就将其先看成整数乘法83,算出乘积是24后,再看原来两个因数中共有三位小数,就从24的末位起数出 3位点上小数点,于是得到0.80.03=0.024。同样,小数除法也是运用转化的思想,将除数是小数的除法转化为除数是整数的除法,从而完成运算。这里的转化体现的是“化新为旧”的思想。 三、三年级上册《需要多少钱》(两位数乘一位数的口算)的教学片断: 1.出示买卖的情境图(图标有泳圈的单价12元,篮球的单价15元)。 2.引导学生提出数学问题。 3.探索算法多样化。 师:买3个球需要多少钱?算式怎样列? 生:153= 师:应该怎样算呢? 生1:我用加法15+15+15=30+15=45(元) 生2:我用乘法103=30 53=15 30+15=45(元) 生3:把15看成3个5,共有9个5,得45(元) 师:你喜欢用什么方法? 生1:用加法。 师:用加法也可以。 生2:用乘法。 师:好的。 ④练习133 705 242 135 313 342 244 师:你喜欢用什么方法就用什么方法。 学生练习时笔者观察了7位小朋友所用的方法,其中有4位是采用加法的…… 案例分析:(主要从算法多样化与优化的层面上加以分析): 《数学课程标准》指出:能灵活运用不同的方法解决生活中的简单问题,并能对结果的合理性进行判断。算法多样化就是鼓励学生独立思考,鼓励学生尝试用自己的方法来计算。由于学生不同的的生活经历和知识能力水平,同一道题目不同的学生常常找到不同的解题策略。在教学中,由于每个学生都有自己的计算方法,学生不再是一个依赖教师的模仿者,而是独立探索的求知者。同时算法多样化与算法优化是不矛盾的。两者可以而且应该统一于学生探究学习的过程中。应把优化的过程作为一个学生主动寻找更好的方法的过程来展开,不要追求全班算法的高度统一,应当充分尊重学生自己的选择,只要学生认为合适,自己喜欢,教师应当加以肯定与鼓励。案例中教师鼓励学生尝试用自己的方法来计算,用不同的解题策略解决同一道题目,体现了算法多样化,为学生之间和师生之间的交流提供了很好的条件,有利于激发学生的创新意识,逐步形成创新的习惯,使得每个学生都能着手解决问题,品尝成功的喜悦。接着鼓励学生用自己喜欢的方法计算。这样的处理是恰当的。应该提倡学生用自己擅长的方法算,这样才能呵护学生的主体意识,实现不同的人在数学上得到不同的发展。但是教师应致力于让学生用自己喜欢的方法在计算的过程中发现差距,从而选择最恰当的方法来解题,达到算法最优化。因此,本案例中,教师还应该引导学生发现解题规律,屏弃学生自己低水平的解题策略,让学生自己来选择最恰当的方法来解题,实现算法优化,从而为以后的学习奠定基础。 四、教学设计案例分析 案例描述: 一年级上册(8和9的加减法)的主题图上有:1幢教学楼,教学楼边上有1面五星红旗和许多树木,操场上有8个小朋友在跳绳,问题是“说一说”。下面是教师按教材教的教学片断: ①出示挂图。 ②提问题。 师:看了这幅图,你发现了什么? 生1:我看见了房子? 师: 你真能干。 生2:我发现了红旗。 生3:我发现了树木。 生4:我发现了小朋友在跳绳。 生5:我发现了地上有小草。 …… 教师不管学生如何回答,都一一加以肯定,以示教学的民主。待过了5分钟,教师急忙抛出:“谁能提出有关8的加减法?” 案例分析:(主要从问题的目的性与开放性的角度分析): 从问题的目的来讲,教师提出的问题缺少目的性或者说太过于开放,没有一定的指向性,教师要完成知识点的教学设计的问题,“看了这幅图你发现了什么?”这样的问题是开放了,但是在开放的基础上,没有了指向性,从而导致学生在回答问题时,都只是讲出自己看见的,但与本课的教学却是没什么关系的一些零碎信息,教师在学生表现出这一倾向时却没有及时的进行纠正,而是任其发展过了五分钟还是没讲到教师所讲的点上,这样虽说有了开放性,有了民主性,但是对本课的教学失去了可用性。 我认为教师在设计问题时,要有开放性,但也要适当的要有指向性,比如“看了这幅图你发现了什么?他们各有多少个?”,这样的提问才有目的性与开放性。 1、[案例描述]《带分数乘法》教学片断: ⒈学生根据应用题“草坪长5米,宽2米,求草坪的面积。”列出算式:52 ⒉算式一出现,教师就立即组织四人小组交流算法。 其中一个组,在小组交流时,由于三位同学还没有想出方法,整个合作过程只好由一位同学讲了三种方法:①(5+)(2+) ②5.82.5 ③,其他同学拍手叫好而告终。 请你根据上述教学片断进行反思(主要从合作交流与独立思考的层面分析)。 答:以上现象是教师在使用小组合作时经常出现的一种问题。就是没有处理好小组合作和独立思考的关系。教师要处理好合作学习与独立思考的关系强调合作学习不是不要独立思考。独立思考应是合作学习的前提基础,合作学习应是独立思考的补充和发挥。多数学习能通过独立思考解决的问题,就没必要组织合作学习。而合作学习的深度和广度应远远超过独立学习的结果。当然,宜独宜合,应和教学情景、学生实际结合,择善而用,才能日臻完美。我们在设计学生合作学习时,能否认真的思考以下三个问题:学生在合作交流前,你让学生经历过独立思考吗?学生在合作交流时,他们有充分的时空吗?学生在合作交流时,有否进行明确的角色分工呢? 3、案例描述 师:今天,在学习小数的加减法之前,请你们独立解决一个问题:笑笑在书店买一套《中国儿童百科全书》花了148元,还剩下53元,笑笑带了多少钱? 师:淘气跟笑笑一起到书店买书,也有一个问题,看谁有办法帮他解决? 淘气在书店买一本《童话故事》,花了3. 2元,他又买了一本数学世界,花了11. 5元。淘气一共花了多少元?(鼓励学生迎接挑战,认真审题,先列出算式,教师巡堂,再到黑板前列出算式:3.2+11.5=?) 师:(指着算式)这是我看到的一些同学所列的算式,有没有列式和这个不同的?(学生还可能列出11.5+3.2=?教师也把它写到黑板上,给予肯定) 师:为了帮淘气解决付钱的问题,大家都列出了正确的算式。可我们都没有尝试过两个小数怎么相加。现在就来试一试看谁能独立发现小数加法的算法。 (1)学生独立思考,自主探索。 (2)在独立思考的基础上,小组交流。 (3)看一看教材中三位小朋友是怎么计算的。其中哪种算法和你的一样,哪种你没想到?你还有不同的算法吗? (4)小组讨论:教材中的三种算法各有什么特点和相同之处?小数相加时,为什么智慧老人特别强调“小数点一定要对齐?” (5)全班围绕“为什么小数点一定要对齐”交流,教师归纳小结,明晰小数加法的算理。 师:多位数相加时,个位数字一定要对齐。这是为什么呢?因为相同数位(单位)上的数才能相加;个位对齐了,所有的数位也都对齐了。小数相加时,小数点一定要对齐也是这个道理。只要小数点对齐了,所有的数位也都对齐了。教材中前两种算法的共同特点是化去小数点,把小数相加变成整数相加,但“相同单位的数才能相加”的算理没有变。所以,只要小数点对齐了,小数加法的计算与多位数加法的计算就没有什么不同了。 问题讨论 (1). “小数加法”这一课,教材是让学生直接进行尝试的,本案例中教师引入时先安排了整数加法的内容,你对此有什么看法?直接安排学生尝试,对学生理解小数加减法是否有帮助? (2)、教师在学生讨论完之后,安排了看书的环节,你认为有必要吗?为什么? (3)、书中三种算法的共性是什么?为什么要让学生讨论这个问题? 4、案例《9加几》前半节课的教学过程: ⒈创设9+5的情境,列出数学算式。 ⒉学生合作交流9+5=? ⒊比较算法多样化,得出“凑十法”。 ⒋教师布置学生以四人小组的为单位,通过摆小棒计算9+6= 9+7= 9+4= 9+3= 笔者仔细观察各小组的活动情况,大多数小组同学先写出得数,再摆小 棒,有一个组的同学纯粹在玩小棒。为什么会这样呢?为了弄清原因,于是我又出了一些9加几的算式让学生口答,每人5题,抽测了十位同学,只有一人算错了1题。问他们怎样算的,多数同学回答,想出来的,在幼儿园里就会算了。位数不少的同学能把“凑十法”的过程说得头头是道、明明白白。 思考题:1、摆小棒计算时学生为什么先写得数再摆小棒? 2、我们应如何对待书中所安排的动手操作? 2、[案例描述] 平行四边形面积公式推导的教学片断: ⒈教师布置学生独立思考的内容:我们如何把平行四边形转化为已经知道面积公式的平面图形来研究它的面积公式呢? ⒉学生合作交流不到2分钟,当教师发现有一个小组的同学“过平行四边形的一个顶点作平行四边形的高,把平行四边形分割成一个直角三角形和一个直角梯形,然后再等量拼成一个长方形,所以平行四边形的面积就是底乘高”的方法后,就立即宣布合作结束。 [案例分析](主要从与合作学习有关的因素的角度上加以分析) 答:《新课标》明确指出:教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助学生在自主探索和合作交流的过程中真正理解和掌握基本的数学知识技能、数学思想和方法,获得广泛的数学活动经验。案例中教师先让学生独立思考,再让学生合作交流,这样的安排是合理的、恰当的。[A2]因为合作必须建立在学生个体需要的基础上,只有学生经过独立思考,有了交流的需要,再开展合作学习才是有价值的和有成效的。 但该教师在学生合作交流不到2分钟发现有一个小组得出计算方法时就立即宣布合作结束在时机上是不合适的,这样的做法是不得当的。[A3]因为在合作交流的过程中,需要有充分的交流的时间和充分从事数学活动的机会,让学生在自己的小组里交流自己的看法,形成统一的意见。只有大部分的学生或普遍学生在自己的小组里交流自己的看法,形成统一的意见后才能宣布合作结束。[A4] 4、[案例描述]《带分数乘法》教学片断: ⒈学生根据应用题“草坪长5米,宽2米,求草坪的面积。”列出算式:52 ⒉算式一出现,教师就立即组织四人小组交流算法。 其中一个组,在小组交流时,由于三位同学还没有想出方法,整个合作过程只好由一位同学讲了三种方法: ①(5+)(2+) ②5.82.5 ③, 其他同学拍手叫好而告终。 请你根据上述教学片断进行反思 [案例分析](主要从合作交流与独立思考的层面分析)。 答:以上现象是教师在使用小组合作时经常出现的一种问题。就是没有处理好小组合作和独立思考的关系。 教师要处理好合作学习与独立思考的关系: 强调合作学习不是不要独立思考。独立思考应是合作学习的前提基础,合作学习应是独立思考的补充和发挥。多数学习能通过独立思考解决的问题,就没必要组织合作学习。而合作学习的深度和广度应远远超过独立学习的结果。当然,宜独宜合,应和教学情景、学生实际结合,择善而用,才能日臻完美。 我们在设计学生合作学习时,能否认真的思考以下三个问题:学生在合作交流前,你让学生经历过独立思考吗?学生在合作交流时,他们有充分的时空吗?学生在合作交流时,有否进行明确的角色分工呢? 5、[案例描述]“分数的意义” 记得那是一节顺利而精彩的课,上课内容是“分数的意义”。在课的结尾,教者没有安排学生围绕知识点去小结,而是让学生在小组内、班里用分数表述一下自己这节课的学习情绪。令人难忘的是有一位学生在小组里的表述:“我把整节课的学习情绪看成单位‘1’,高兴的占了3份,即3/4高兴,遗憾的占了一份,即1/4遗憾。因为面对这么多的老师听课,我们班的同学一个个都正确地回答了老师的提问,展示了我们班的风采,为班级争了光,我为我们班而自豪,感到十分高兴。我之所以遗憾,是因为整堂课我一直认真思考,积极举手,许多问题又不难,但老师没有给我一次机会,我感到很遗憾……” 下课后我找到这位同学了解情况: 问:小朋友,你知道老师为什么没让你发言吗? 答:老师有可能没有看到我举手,也有可能怕我回答不准确吧,因为数学这门课我学得不太好。 问:平时课堂上,老师都叫哪些同学发言呢? 答:差不多都是成绩较好的同学。 [案例分析](可以从面向全体的角度分析): 这是我们数学课堂中存在的普遍想象,我们的数学课堂教学如何来面向全体学生呢?只有最大限度地尊重个体,才有可能真正面向全体,这样的道理已经很难在传统的教学组织形式下得以落实。我们想,我们可以采用开展小组合作交流,让学生的个人想法在小组内得到展示,在小组内得到表现。… 3、案例描述 师:今天,在 学习小数的加减法之前,请你们独立解决一个问题:笑笑在书店买一套《中国儿童百科全书》花了148元,还剩下53元,笑笑带了多少钱? 师:淘气跟笑笑一起到书店买书,也有一个问题,看谁有办法帮他解决? 淘气在书店买一本《童话故事》,花了3. 2元,他又买了一本数学世界,花了11. 5元。淘气一共花了多少元?(鼓励学生迎接挑战,认真审题,先列出算式,教师巡堂,再到黑板前列出算式: 3.2+11.5=? 师:(指着算式)这是我看到的一些同学所列的算式,有没有列式和这个不同的?(学生还可能列出11.5+3.2=?教师也把它写到黑板上,给予肯定) 师:为了帮淘气解决付钱的问题,大家都列出了正确的算式。可我们都没有尝试过两个小数怎么相加。现在就来试一试看谁能独立发现小数加法的算法。   (1)学生独立思考,自主探索。   (2)在独立思考的基础上,小组交流。   (3)看一看教材中三位小朋友是怎么计算的。其中哪种算法和你的一样,哪种你没想到?你还有不同的算法吗? (4)小组讨论:教材中的三种算法各有什么特点和相同之处?小数相加时,为什么智慧老人特别强调“小数点一定要对齐?” (5)全班围绕“为什么小数点一定要对齐”交流,教师归纳小结,明晰小数加法的算理。 师:多位数相加时,个位数字一定要对齐。这是为什么呢?因为相同数位(单位)上的数才能相加;个位对齐了,所有的数位也都对齐了。小数相加时,小数点一定要对齐也是这个道理。只要小数点对齐了,所有的数位也都对齐了。教材中前两种算法的共同特点是化去小数点,把小数相加变成整数相加,但“相同单位的数才能相加”的算理没有变。所以,只要小数点对齐了,小数加法的计算与多位数加法的计算就没有什么不同了。 问题讨论 (1).“小数加法”这一课,教材是让学生直接进行尝试的,本案例中教师引入时先安排了整数加法的内容,你对此有什么看法?直接安排学生尝试,对学生理解小数加减法是否有帮助? (2)、教师在学生讨论完之后,安排了看书的环节,你认为有必要吗?为什么? (3)、书中三种算法的共性是什么?为什么要让学生讨论这个问题? 案例分析(围绕上述问题分析) 1.学习小数加法,先安排整数加法的内容,通过解决这个问题,激活学生已有的多位数加法的经验,帮助学生确定学习的心理趋向,找到新旧知识联系的桥梁,有利于新知的同化。但这样一来,就降低了探索的难度,也容易束缚学生的思维,问题也就没了挑战性。 直接安排学生尝试,让学生经历从独立审题到列出算式的过程,确保每个人都有独立思考的时间,然后交流。先做后说,把教师的教建立在学生思考交流的基础之上,学生对小数加减法的理解会更深刻。 2、在小组交流的基础上,再解读教材,可以让写生在解读过程中进一步明晰思路,反思自己的成功与不足。对于理解不到位的,通过读书可以促进对问题的理解。 3、讨论各种算法的共性,是为了突出算理:相同单位的数量才能相加。 4、案例制作与经验推广 传统教研活动往往是把比较成功的研究结果(如成功课例)展示给教师,以供学习和效仿,但往往经验推广成效不大——通常只是教学程序和教学方法的形式上的模仿。原因是:执教老师因经历了试教——发现问题——总结经验——修正方案——在试教……这么一个循环往复的过程,在这一过程中,能不断地积累经验,逐步明确教学任务,掌握教学程序和每一个教学程序中的教学侧重等,同时,也获得了许多难以用言语充分表达的(即无法在说课中陈述清楚的)默会知识。而来参与培训的教师往往只看到成功的结果,没有经历和体验到执教教师走向成功的过程。因此,我们设想,如果把教学研究过程中对某一问题在认识上的发展变化过程,借助一定的方式展现给教师,例如,以案例的呈现方式将某个教学问题与教师教学实践中遇到的问题或困惑相匹配,从而引起教师的共鸣和产生主动解决问题的心向,这样的经验推广形式可能成效更大。于是,我们课题组成员以“除法运算”的算法教学研究为例,对学生建构算法的心理活动过程进行了分析与研究,并把研究过程中比较成功的课例,向全区推广展示的同时,把研究过程中具有一定代表性的教例,制作成教学案例,且在教研活动中对比呈现,引导教师作对比分析与反思。实践表明:这种经验推广方式更贴近教师的教学实际,能将教师的即时需要与长远发展相结合,激发教师主动参与思考,理解二期课改理念,能更有效地促进教师专业化水平的提升。
展开阅读全文
相关搜索
温馨提示:
taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。

当前位置:首页 > 教育专区 > 教案示例


本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁