小学数学基础知识资料全套汇编.doc

举报
资源描述
\\ 小学数学基础知识1 数学:是一门研究数(算术与代数)与形(平面与立体)的学科,它源于生活,高于生活,最终作用于生活,具有很强的逻辑性与抽象性等特点。 一,数的分类(整数,分数,小数) 1.整数(正整数,负整数,0的总称) 正整数: 用来表示物体个数的1、2、3、4、5……叫做正整数。 0: 0是一个数,是一个自然数,也是一个整数,但不是正整数或负整数。 0既可以表示“没有”,也可以作为某些数量的界限,如0oC等。 0不能作除数,不能作分母,也不能作比的后项。 负整数: 像-l、-2、-3、-4、-5……这样的数就叫做负整数。 整数:像…,-3,-2,-1,0,1,2,3,…这样的数统称整数。 整数包括负整数、0和正整数。 整数的个数是无限的。自然数是整数的一部分。 自然数 自然数:用来表示物体个数的0、l、2、3、4、5、6、7……叫做自然数。自然数包括0和正整数。 正、负数 正数:正数包括正整数、正分数、正小数、正百分数等。 负数:负数包括负整数、负分数、负小数、负百分数等。 负数可以表示相反意义的量。 数对:用数对表示位置时,第一个数表示列,第二个数表示行。 数的读法和写法: 读、写都要从高位到低位,每一数级末尾的0都不读出来,其他数位连续有几个0都只读一个0。不管读和写都要进行分级。如534007000602读作:五千三百四十亿零七百万零六百零二 二,分数: 表示把“单位1”平均分成若干份,表示这样的一份或几份的数,叫做分数。表示其中一份的数叫做分数单位。例如:的分数单位是,它有7个这样的分数单位。 真分数: 分子比分母小的分数叫真分数。真分数小于1。 假分数:分子大于或等于分母的分数叫做假分数。假分数大于或等于1。 带分数:一个整数(零除外)和一个真分数组合在一起的数,叫做带分数。带分数也是假分数的另一种表示形式,相互之间可以互化。 分数的基本性质: 一个分数的分子、分母同时乘上或除以相同的数(零除外),分数的大小不变,这叫做分数的基本性质。 三,小数: 分母为整十整百的数,小数是分数的一种特殊形式。但是不能说小数就是分数。 有限小数: 小数的小数部分的位数是有限的,这样的小数叫做有限小数。 无限小数:小数的小数部分的位数是无限的,这样的小数叫做无限小数。循环小数都是无限小数,无限小数不一定都是循环小数。例如,圆周率也是无限小数,它是无限不循环小数。 循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。 纯循环小数:循环节从小数部分第一位开始的循环小数,叫做纯循环小数。例如、 混循环小数:循环节不是从小数部分的第一位开始循环的循环小数,叫混循环小数。例如、 小数的基本性质: 小数的末尾添上0或去掉0,小数的大小不变,这叫做小数的基本性质。小数的基本性质与分数的基本性质是一致的。 小学数学基础知识2 一, 四则运算(跟据操作数和相应法则求出结果的过程) 加法:求多个数之和的运算 减法:被减数-减数=差。减法是加法的逆运算。 乘法:求几个相同加数的和的简便运算,叫做乘法。因数因数=积 除法:被除数除数=商。除法是乘法的逆运算。 二, 运算定律 加、减法的运算定律: 加法交换律:a+b=b+a 加法结合律:a+b+c=a+(b+c) 减法的运算定律:a-b-c=a-(b+c) 乘、除法运算定律: 乘法的交换律:ab=ba 乘法的结合律:abc=a(bc) 乘法分配律:(a+b)c=ac+bc 或(a—b)c=ac—bc 除法的运算定律:abc=a(bc) 商不变的性质:两个数相除,被除数和除数同时乘上或除以相同的数(0除外),商的大小不变(余数的大小有变化)。 积不变性质:一个因数扩大若干倍,另一个因数缩小相同的倍数,其积不变。 乘法的意义: l、求几个相同加数的和是多少?例如:2713,表示求13个27的和是多少?也可以表示求27的13倍是多少? 2、求一个数的几分之几是多少?例如:270.3的意义:求27的十分之三是多少? 除法的意义: l、把一个数平均分成若干份,每份是多少?例如:243,表示把24平均分成3份,每份是多少? 2、一个数是另一个数的多少倍。例如:243,表示24是3的多少倍? 3、一个数里有几个除数。例如243表示24里面包含有几个3。 4、已知一个数的几分之几是多少,求这个数。例如:243已知一个数的3倍是24,求这个数。 整除与除尽:整除:被除数、除数、商都是整数(除数不为0)。 除尽:整除都可以说是除尽,但除尽不一定是整除。 例如:l5=0.2,叫除尽,不叫整除,因为商是小数。 又如:103=3.33…,既不叫整除,也不叫除尽,叫除不尽。 三, 因数和倍数: 当甲数能被乙数整除时,就说甲数是乙数的倍数,乙数是甲数的因数。如123=4,就说12是3的倍数,3是12的因数。这两个概念都是相对而存在,一个自然数是不存在是否是倍数或因数的。例如:“3是因数”,就是一个错误说法。只能说3是12的因数,或12的因数有3。又例如:“12是倍数”,也是一个错误说法。只能说12是3的倍数,或3的倍数有12。 奇数与偶数:凡是能被2整除的数叫偶数,不能被2整除的数叫奇数。 质数(素数)与合数:一个数的因数只有1和它本身两个因数的数叫做质数,也叫素数,如2。一个数的因数除了1和它的本身以外,还有其他的因数,这 个数就叫合数,如4。 100以内的质数:2 3 5 7 l1 13 17 19 23 29 3l 37 4l 43 47 53 59 61 67 71 73 79 83 89 97 1既不是质数,也不是合数。最小的质数是2,最小的合数是4。 四, 公因数与互质数 公因数: 几个数公有的因数,叫做公因数。它的个数是有限的。既有最大的。也有最小的,最小的公因数是1。 互质数: 两个数的公因数只有1,而没有其他公因数的,这两个数就叫互质数。例如8和9,11和13,6和7。 任意两个不相同的质数都是互质数。但互质的两个数不一定都是质数。如8和9互质,但它们都是合数。 小学数学基础知识3 质数与互质数: 这两个概念没有什么联系。两个质数,不能肯定就是互质数,例如5和5。只有两个不相同的质数,才能肯定是互质数。另外,两个合数既可能是互质数,也可能不是互质数,但不能说两个合数一定不是互质数。 质因数:把一个合数分解成几个质数相乘的形式,这样的质数叫做质因数。 分解质因数:把一个合数分解成几个质数相乘的形式,就叫做分解质因数。 公倍数:几个数公有的倍数。叫做公倍数。它的个数是无限的,只有最小的,没有最大的。 最大公因数:几个数公有的因数中,最大的一个就叫做这几个数的最大公因数。 最小公倍数:几个数公有的无限个倍数中,最小的一个就叫做这几个数的最小公倍数。 求最大公因数与最小公因数的方法:短除法,分解质因数,列举法, 2的倍数的特征: 个位上是0、2、4、6、8的数是2的倍数。是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。 5的倍数的特征:个位上是0或5的数是5的倍数。 3的倍数的特征:一个数的各个数位上的数之和是3的倍数,这个数就是3的倍数。 同时是2、3、5的倍数的特征: 个位上一定是0。同时是2、3、5的倍数的最小两位数是30,最小三位数是120。 分数能否化成有限小数的判断方法:一个最简分数分数的分母只有质因数“2或5”,这个分数就能化成有限小数。如果含有2和5以外的质因数,就不能化成有限小数。 分数的通分、约分(根据分数的基本性质): 通分:把几个分母不同的分数,化成分母相同且大小不变的分数,叫做通分。 约分:把一个分数化成同它相等的,分子、分母较小的分数,叫做约分。 百分数: 表示一个数是另一个数的百分之几的数,叫做百分数。百分数又叫百分率或百分比。百分数不带单位名称。 百分率:例如:出勤率,表示出勤的人数占总人数的百分之几。百分率是不能超过100%。 公历年的平年、闰年: 平年:把公历年份除以4(这里不是整百的公历年份)有余数时,就把这一年叫做平年,有365天。其中二月份有28天。闰年:把公历年份除以4(这里不是整百的公历年份)没有余数时.就把这一年叫做闰年。计366天。其中二月份有29天。如果年份是整百的,则除以400,再看余数,判断方法同上。 比和比值: 比:两个数相除,又叫做两个数的比。数a除以数b(b≠0)可以叫做a与b的比,记作a:b。也可以用分数形式表示a/b。 比值:比的前项除以后项所得的商,叫做比值。比和比值不同。如5/7既可看作是比,又可看作是比值。但是带分数则只能表示比值。比值不带单位名称。 比的基本性质:在比的前项和后项同时乘上或除以相同的数(0除外),比值不变。 化简比:把一个比化为最简单的整数比,叫做比的化简。通常用比的基本性质化简比,也可以用求比值的方法化简比。一般情况下,化简以后的比,前后两项为互质数。 比例:表示两个比相等的式子叫做比例。 比例的基本性质:在比例中,两个外项的积等于两个内项的积叫做比例的基本性质。 小学数基础知识4 比例尺:图上距离和实际距离的比叫做这幅图的比例尺。比例尺是一个比。比例尺有数值比例尺和线段比例尺两种,它们可以互相转换。 正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。用字母表示:y/x=k(一定) 反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。用字母表示 y x=k(一定) 方程:含有未知数的等式叫做方程。(注意:不是“含有未知数的式子叫方程”) 方程的解:使方程左右两边相等的未知数的值叫做方程的解。 解方程:求方程的解的过程叫做解方程。 条形统计图的特点:要清楚地表示出各种数量的多少时用条形统计图。 折形统计图的特点: 不但要表示出各种数量的多少,还要能清楚地看出各种数量的增减变化情况时用折线统计图。 扇形统计图的特点:要清楚地表示出各部分数量占总数的百分之几时用扇形统计图。 平均数:平均数代表这组数据的“一般水平”。求平均数时,就用各数据的总和除以数据的个数,得数就是这组数据的平均数,多数情况下用平均数,但如果受到极大或极小数据影响就不能用了。 中位数:中位数代表这组数据的“中等水平”。求中位数时,首先要先排序(从小到大或从大到小),然后根据数据的个数,当数据为奇数个时,最中间的一个数就是中位数;当数据为偶数个时,最中间两个数的平 均数就是中位数。有极大、极小数据影响不能使用平均数时可以使用。 众数:在一组数据中出现次数最多的数叫做这组数据的众数。众数代表“多数水平”。当众数的数据数量占总数量的大多数时可用。 直线:没有端点,可以向两端无限延长。 射线:只有一个端点 可以向一端无限延长。直线和射线无法比较长短。 线段:有两个端点。射线和线段都是直线的一部分。两点间,线段最短。 平行线:在同一平面内不相交的两条直线叫做平行线。 垂线、垂足:两条直线相交,有一个角是直角时,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,其交点叫垂足。从直线外一点到直线所画的线段中,垂线最短。 角:锐角(大于0o小于90o的角)、直角(等于90o的角)、钝角(大于90o而小于180o的角)、平角(等于180o的角)、周角(等于360o的角)。 长方体和正方体的特点:长方体和正方体都有6个面,12条棱,8个顶点:它们的不同点是长方体至少有4个面是长方形,而正方体的6个面都是正方形。正方体可以看作特殊的长方体。 圆柱和圆锥的特点: 圆柱有3个面,上下两个平面叫做底面,另一个曲面叫做侧面。圆锥有两个面,它的底面是一个圆,它的侧面是一个扇形。等底等高的情况下,圆柱的体积是圆锥的3倍,圆锥的体积是圆柱的三分之一。 面积和占地面积:面积是用来表示一个物体表面的大小。 占地面积就是所占地面的面积的大小(立体图形底面的面积)。 体积和容积(容量): 体积从外面测量数据,容积从里面测量数据。 体积:物体所占空间的大小,叫做物体的体积。 容积:一个容器所能容纳物体的体积,叫做容积。 轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形叫做轴对称图形,这条直线叫做对称轴。画对称轴时,要画虚线,而且要两边出头(这因为对称轴是一条直线)。 表面积:立体图形所有表面的面积叫做它的表面积。 小学数学基础知识5 公式 1、正方形: 周长=边长4 C=4a 面积=边长边长 S=a2 2、长方形: 周长=(长+宽) 2 C=2(a+b) 面积=长宽 S=ab 3、平行四边形:面积=底高 S=ah 高=面积底 底=面积高 4、三角形: 面积=底高2 S=ah2 三角形高=面积2底 三角形底:面积2高 5、梯形: 面积=(上底+下底)高2 S=(a+b)h2 求高:根据面积公式列出方程解答 6、圆形:周长=直径圆周率 C=d 或 周长=2半径圆周率 C=2r 面积=圆周率半径半径 S=r2 7、正方体: 表面积=棱长棱长6 S表=6a2 体积=棱长棱长棱长 V=a3 8、长方体: 表面积(长宽+长高+宽高)2 S=2(ab+ah+bh) 体积=长宽高 V=abh 9、圆柱体: (1)侧面积=底面周长高 S=2rh (2)表面积=侧面积+底面积 S=2rh+2r2 (3)体积=底面积高 V=r2h 10、圆锥体:体积=底面积高3 V=Sh 求高:根据体积公式列出方程解答。 11、利息=本金利率时间 税后利息=本金利率时间(1-5%) 应缴纳税款=营业额税率 纯收入=营业额-应缴纳税款 进率表 长度:1千米1000米 1米=l0分米 1分米=10厘米 1厘米=10毫米 1米=100厘米 面积(地面面积): 1平方千米=100公顷 l公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 体积(容积):l立方米=1000立方分米 1立方分米=1000立方厘米 l升=1000毫升 1立方分米=1升 l立方厘米=l毫升 质量:1吨=1000千克 1千克=1000克 时间:l世纪=100年 1年=12个月 大月(1、3、5、7、8、10、12)有3l天;小月(4、6、9、11)有30天;平年2月有28天,闰年2月有29天 1天=24小时 1小时=60分 1分=60秒 单位:计数或计量时所参照的一个标准量,就叫单位 单位1:将一个或多个对象看作一个整体,用自然数“1”表示,就叫作单位1(即一个整体)
展开阅读全文
相关搜索
温馨提示:
taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。

当前位置:首页 > 教育专区 > 教案示例


本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁