小学奥数周期问答教师版.doc

举报
资源描述
.- 第八讲:周期循环与数表规律 知识点说明 周期问题: 周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期. 分类: 1.图形中的周期问题; 2.数列中的周期问题; 3.年月日中的周期问题. 周期性问题的基本解题思路是:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。主要方法有观察法、逆推法、经验法等。主要问题有年月日、星期几问题等。 ⑴观察、逆推等方法找规律,找出周期.确定周期后,用总量除以周期,如果正好有整数个周期,结果就为周期里的最后一个; 例如:1,2,1,2,1,2,…那么第18个数是多少? 这个数列的周期是2,,所以第18个数是2. ⑵如果比整数个周期多个,那么为下个周期里的第个; 例如:1,2,3,1,2,3,1,2,3,…那么第16个数是多少? 这个数列的周期是3,,所以第16个数是1. ⑶如果不是从第一个开始循环,可以从总量里减掉不是循环的个数后,再继续算. 例如:1,2,3,2,3,2,3,…那么第16个数是多少? 这个数列从第二个数开始循环,周期是2,,所以第16个数是2. 板块一、图形中的周期问题 【例 1】 小兔和小松鼠做游戏,他们把黑、白两色小球按下面的规律排列: ●●○●●○●●○… 你知道它们所排列的这些小球中,第90个是什么球?第100个又是什么球呢? 【解析】 仔细观察图中球的排列,不难发现球的排列规律是:2个黑球,1个白球;2个黑球,1个白球;……也就是按“2个黑球,1个白球”的顺序循环出现,因此,这道题的周期为3(2个黑球,1个白球).再看看90、100里包含有几个这样的周期,若正好有整数个周期,结果为周期里的最后一个,若是有整数个周期多几个,结果就为下一个周期里的第几个.因为,正好有30个周期,第90个是白球.…1,有33个周期还多1个,所以,第100个是黑球. 【巩固】 美美有黑珠、白珠共102个,她想把它们做成一个链子挂在自己的床头上,她是按下面的顺序排列的: ○●○○○●○○○●○○○…… 那么你知道这串珠子中,最后一个珠子应是什么颜色吗? 美美怕这种颜色的珠子数量不够,你能帮她算出这种颜色在这串珠子中共有多少个吗? 【解析】 观察可以发现,这串珠子是按“一白、一黑、二白”4个珠子组成一组,并且不断重复出现的.我们先算出102个珠子可以这样排列成多少组,还余多少.我们可以根据排列周期判断出最后一个珠子的颜色,还可以求出有多少个这样的珠子.因为…2,所以最后一个珠子是第26个周期中的第二个,即为黑色.在每一个周期中只有1个黑珠子,所以黑色珠子在这串珠子中共有(个) 【例 2】 小倩有一串彩色珠子,按红、黄、蓝、绿、白五种颜色排列. ⑴第73颗是什么颜色的? ⑵第10颗黄珠子是从头起第几颗? ⑶第8颗红珠子与第11颗红珠子之间(不包括这两颗红珠子)共有几颗珠子? 【解析】 ⑴这些珠子是按红、黄、蓝、绿、白的顺序排列,每一组有5颗.(组)……3(颗),第73颗是第15组的第3颗,所以是蓝色的. ⑵第10颗黄珠子前面有完整的9组,一共有(颗)珠子.第10颗黄珠子是第l0组的第2颗,所以它是从头数的第47颗.列式:(颗) ⑶第8颗红珠子与第11颗红珠子之间一共有14颗珠子.第8颗红珠子与第11颗红珠子之间有完整的两组(第9、10组),共l0颗珠子,第8颗红珠子后面还有4颗珠子,所以是14颗.列式:(颗). 【巩固】 奥运会就要到了,京京特意做了一些“北京欢迎你”的条幅,这些条幅连起来就成了:“北京欢迎你北京欢迎你北京欢迎你……”依次排列,第28个字是什么字? 【解析】 这道题是按“北京欢迎你”的规律重复排列,即5个字为一个周期.因为…3,所以28个字里含有5个周期还多3个字,即第28个字就是所列一个周期中的第3个字,所以第28个字是“欢”字. 【巩固】 节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯之间有红、黄、绿各一盏彩灯.也就是说,从第一盏白灯起,每一盏白灯后面都紧接着有3盏彩灯.那么第73盏灯是什么颜色的灯? 【解析】 从第一盏白灯开始,每隔三盏彩灯就又出现一盏白灯,不难看出白灯的编号依次是: 1,5,9,13,……,这些编号被4除所得的余数都是1.,即73被4除的余数是1,因此第73盏灯是白灯. 【例 3】 节日的夜景真漂亮,街上的彩灯按照5盏红灯、再接4盏蓝灯、再接1盏黄灯,然后 又是5盏红灯、4盏蓝灯、1盏黄灯、……这样排下去.问: ⑴第150盏灯是什么颜色? ⑵前200盏彩灯中有多少盏蓝灯? 【解析】 ⑴街上的彩灯按照5盏红灯、再接4盏蓝灯、再接1盏黄灯,这样一个周期变化的,实际上一个周期就是(盏)灯.,150盏灯刚好15个周期,所以第150盏应该是这个周期的最后一盏,是黄色的灯. ⑵如果是200盏灯,就是的周期.每个周期都有4盏蓝灯,(盏) 前200盏彩灯中有80盏蓝灯. 【巩固】 在一根绳子上依次穿2个红珠、2个白珠、5个黑珠,并按此方式反复,如果从头开始数,直到第50颗,那么其中白珠有多少颗? 【解析】 …5.(个). 【巩固】 小莉把平时积存下来的200枚硬币按3个1分,2个2分,1个5分的顺序排列起来. ⑴最后1枚是几分硬币 ⑵这200枚硬币一共价值多少钱? 【解析】 ⑴每个周期有枚硬币,要求最后一枚,用这个数除以6,根据余数来判断 ……2,所以最后一枚是1分硬币 ⑵每个周期中6枚硬币共价值(分),用这个数乘以周期次数再加上余下的,就可以得到一共价值多少了(分),所以,这200枚硬币一共价值398分. 【巩固】 桌子上摆了很多硬币,按一个一角,两个五角,三个一元的次序排列,一共19枚硬币.问:最后一个是多少钱的?第十四个是多少钱的? 【解析】 …1,…2,所以,第19枚硬币是一角的,第14枚硬币是五角的. 【巩固】 有249朵花,按5朵红花,9朵黄花,13朵绿花的顺序轮流排列,最后一朵是什么颜色的花?这249朵花中,什么花最多,什么花最少?最少的花比最多的花少几朵? 【解析】 这些花按5红、9黄、13绿的顺序轮流排列,它的一个周期内有(朵)花.因为……6,所以,这249朵花中含有9个周期还余下6朵花.按花的排列规律,这6朵花中前5朵应是红花,最后一朵应是黄花.在这一个周期里,绿花最多,红花最少,所以在249朵花中,自然也是绿花最多,红花最少.少几朵呢?有两种解法: (方法1)……6 红花有:(朵)绿花有:(朵)红花比绿花少:(朵) (方法2)……6,一个周期少的:(朵),(朵),余下的6朵中还有5朵红花,所以(朵). 【例 4】 如图所示,每列上、下两个字(字母)组成一组,例如,第一组是“我,”,第二组是“们,”…… 我 们 爱 科 学 我 们 爱 科 学 我 …… …… ⑴写出第62组是什么? ⑵如果“爱,”代表1991年,那么“科,”代表1992年……问2008年对应怎样的组? 【解析】 (1)要求第62组是什么数,我们要分别求出上、下两行是什么字(字母),上面一行是以“我们爱科学”五个字为一个周期,下面一行则是以“”七个字母为一个周期 ……2 ,……6,所以第62组是“们,” ⑵2008是1991之后的第17组,现在上面一行按“科学我们爱”五个字为一个周期,下面一行则按“” 七个字母为一个周期:(组),……2 ……3,所以2008年对应的组为“学,”. 【巩固】 在图所示的表中,将每列上、下两个字组成一组,例如第一组为(新奥),第二组为(北林),那么第50组是什么? 新北京新奥运新北京新奥运新北京新奥运…… 奥林匹克运动会奥林匹克运动会奥林匹克运动会…… 【解析】 要知道第50组是哪两个数,我们首先要弄清楚第一行和第二行的第50个字分别应该是什么.第一行“新北京新奥运”是6个字一个周期,…2,第50个字就是北.再看第二行“奥林匹克运动会”是7个字一个周期,…1,第50个字就是奥.把第一行和第二行合在一起,第50组就是“北奥”. 【例 5】 如右图,是一片刚刚收割过的稻田,每个小正方形的边长是1米,A、B、C三点周围的阴影部分是圆形的水洼。一只小鸟飞来飞去,四处觅食,它最初停留在0号位,过了一会儿,它跃过水洼,飞到关于A点对称的1号位;不久,它又飞到关于B点对称的2号位;接着,它飞到关于C点对称的3号位,再飞到关于A点对称的4号位,……,如此继续,一直对称地飞下去。由此推断,2004号位和0号位之间的距离是多少米? 【解析】 0米。根据题上给出的条件,动手画出,就可以了!四次再次回到0号位置!2004是4的倍数,所以第2004号位和0号位之间的距离是0米。 板块二、数列中的周期问题 【例 6】 小和尚在地上写了一列数:7,0,2,5,3,7,0,2,5,3… 你知道他写的第81个数是多少吗? 你能求出这81个数相加的和是多少吗? 【解析】 ⑴从排列上可以看出这组数按7,0,2,5,3依次重复排列,那么每个周期就有5个数.81个数则是16个周期还多1个,第1个数是7,所以第81个数是7,…1 ⑵每个周期各个数之和是:.再用每个周期各数之和乘以周期次数再加上余下的各数,即可得到答案.,所以,这81个数相加的和是279. 【巩固】 根据下面一组数列的规律求出51是第几个数? 1、2、3、4、6、7、8、9、11、12、13、14、16、17…… 【解析】 观察题目可知数列个位数字每九个数一组,十位数字依次增加,0~4共五个数,则可列式为:59+1=46,即51为第46个数。 【例 7】 ⑴……(25个4),积的个位数是几? ⑵24个2相乘,积末位数字是几? 【解析】 ⑴按照乘数的个数,积的末位数字的规律是:4,6,4,6,4,6,……,奇数个4相乘得数的末位数字是4,偶数个4相乘得数的末位数是6,所以…1,25个4相乘,积的末位数字是4. ⑵按照乘数的个数,末位数字的规律是2,4,8,6,2,4,8,6,……,4个一组,所以24个2相乘,积末位数字是6. 【巩固】 紧接着1989后面写一串数字,写下的每一个数字都是它前面两个数字的乘积的个位数.例如,,在9后面写2,,在2后面写8……得到一串数字:19892868…,问:这串数字从1开始,往右数,第l999个数字是几?这1999个数字的和是多少? 【解析】 ⑴根据题意,写出这列数的前面部分数字:19892868842868842……“286884”这6个数字重复出现,周期是6. ⑵第1999个数字是:因为,所以,第l999个数字是6. ⑶这1999个数字的和是: 【例 8】 12个同学围成一圈做传手绢的游戏,如图.   ⑴从1号同学开始,顺时针传l00次,手绢应在谁手中?     ⑵从1号同学开始,逆时针传l00次,手绢又在谁手中?    ⑶从1号同学开始,先顺时针传l56次,然后从那个同学开始逆时针传143次,再顺时针传107次,最后手绢在谁手中? 【解析】 ⑴因为一圈有l2个同学,所以传一圈还回到原来同学手中,现在,从1号开始,顺时针传l00次,我们先用除法求传了几圈、还余几次.(圈)……4(次)从1号同学顺时针传4次正好传到5号同学手中. ⑵与第一小题的道理一样,先做除法.(圈)……4(次)这4次是逆时针传,正好传到9号同学手中(如图). ⑶先顺时针传156次,然后逆时针传l43次,相当于顺时针传(次);再顺时针传l07次,与13次合并,相当于顺时针传(次),(圈),手绢又回到l号同学手中. 【巩固】 8个队员围成一圈做传球游戏,从⑴号开始,按顺时针方向向下一个人传球.在传球的同时,按顺序报数.当报到72时,球在几号队员手上? 【解析】 将8名队员看作一组,每组报8个数,72个数可以分成几组:组,没有余数,球正好在一组的最后一位队员手中,因此球应该在8号队员手上. 【巩固】 如图,电子跳蚤每跳一步,可从一个圆圈跳到相邻的圆圈.现在,一只红跳蚤从标有数字.的圆圈按顺时针方向跳了1991步,落在一个圆圈里.一只黑跳蚤也从标有数字.的圆圈起跳,但它是沿着逆时针方向跳了1949步,落在另一个圆圈里.问:这两个圆圈里数字的乘积是多少? 【解析】 解答此类问题时,只要能发现旋转周期现象,并充分加以利用,就能较快找到解题的关键.本题中,不难看出这是一个与周期性有关的问题,电子跳蚤每跳12步就回到了原来的位置,如此循环,周期为12. ⑴因为,所以,红跳蚤跳了1991步后落到了标有数字11的圆圈. ⑵因为,所以,黑跳蚤跳了1949步后落到了标有数字7的圆圈. ⑶所求的乘积是. 【巩固】 如右图,把1~8八个号码摆成一个圆圈,现有一个小球,第一天从1号开始按顺时针方向前进329个位置,第二天接着按逆时针方向前进485个位置,第三天又顺时针前进329个位置,第四天再逆时针前进485个位置……如此继续下去,问至少经过几天,小球又回到原来的1号位置? 【解析】 根据题意,小球按顺时针、逆时针、顺时针、逆时针……两天一个周期循环变换方向.每一个周期中,小球实际上是按逆时针方向前进485-329=156(个)位置. 1568=19……4,就是说,每个周期(2天)中,小球是逆旋转了19周后再逆时针前进4个位置. 要使小球回到原来的1号位,至少应逆时针前进8个位置. 84=2(个)周期,22=4(天),所以至少要用4天,小球才又回到原来“1”号位置. 【巩固】 如右图,有16把椅子摆成一个圆圈,依次编上从1到16的号码.现在有一人从第1号椅子顺时针前进328个,再逆时针前进485个,又顺时针前进328个,再逆时针前进485个,又顺时针前进136个,这时他到了第几号椅子? 【解析】 这个人顺时针前进了328+328+136=792个位置,由于79216=49…8,所以他走到9号位置.又这个人逆时针共退回485+485=970个位置,由于97016=60…10,因此这个人到了第15(=9+16-10)号椅子. 【例 9】 甲、乙两人对一根3米长的木棍涂色。首先,甲从木棍的端点开始涂黑色5厘米,间隔5厘米不涂色,再涂5厘米黑色,这样交替做到底。然后,乙从木棍同一端点开始留出6厘米不涂色,然后涂6厘米黑色,再间隔6厘米不涂色,交替做到底,最后木棍上没有被涂黑色部分的总长度是多少? 【解析】 此题最好画图为同学们示意:在前30厘米内未被涂黑的是:1,3,5,在31-60厘米内的是:4,2,因此60厘米一个周期:(1+3+5+4+2)300/60=75厘米 . 【例 10】 右图中,任意三个连续的小圆圈内三个数的连乘积都是891,那么B代表多少? 【解析】 根据“任意三个连续的小圆圈内三个数的连乘积都是891”,可知任意一个小圆圈中的数和与它相隔2个小圆圈的小圆圈中的数是相同的. 于是:B=891(99)=11. 【巩固】 课外活动时,甲、乙、丙、丁四人排成一个圆圈依次报数.甲报“1”,乙报“2”,丙报“3”,丁报“4”,这样每人报的数总比前一个人多1.问“34”是谁报的?“71”是谁报的? 【解析】 根据题意,甲从“1”开始报数,一共报了34次.因为是4个人在报数,所以报4次就要重复一遍,也就是说是以4为一个周期重复的.34里面有8个周期还余2次,所以“34”应是重复8遍以后第二个人报的,即乙报的.…3,所以“71”应是第三个人报的,即丙报的. 【例 11】 实验室里有一只特别的钟,一圈共有20个格.每过7分钟,指针跳一次,每跳一次就要跳过9个格,今天早晨8点整的时候,指针恰好从0跳到9,问:昨天晚上8点整的时候指针指着几? 【解析】 昨晚8点至今早8点,共经历(分钟),,说明从今早8点整起,7分钟,7分钟…往回数,昨晚8点后,第1次指针跳是8点6分,直到今早7点53分,指针正好跳到“0”位,指针共跳了102次. 由于每次跳9格,所以共跳了(格).每20格一圈,,因此从“0”位开始,往回倒45圈,还要倒回18格,正是昨晚8点时指针所指处:,因此昨晚8点整时指针正指着2. 【巩固】 有、、三个蜂鸣器,每次持续鸣叫的时间比例是.每个蜂鸣器每次鸣叫完后停秒钟又开始鸣叫.最初三个蜂鸣器同时开始鸣叫,分钟后第二次同时开始鸣叫,此时蜂鸣器已是第次鸣叫了.问:最初同时开始鸣叫后的多少秒与第一次同时结束鸣叫? 【解析】 14分钟即秒,根据题意可知在840秒内蜂鸣器已经鸣叫了42次,也停了42次,那么蜂鸣器每一次鸣叫加停止的时间为秒,所以蜂鸣器每次鸣叫持续的时间为:秒,那么蜂鸣器每次鸣叫持续秒,蜂鸣器每次鸣叫持续秒, 则、两个蜂鸣器每次鸣叫加停止的时间分别为秒和秒, 由于,所以经过391秒之后与要第二次同时开始鸣叫,由于在此时与都停止鸣叫了8秒,所以与第一次同时结束鸣叫是在最初开始鸣叫之后的第秒. 【例 12】 有一个111位数,各位数字都是1,这个数除以6,余数是几?商的末位数字是几? 【解析】 我们可以用列表的方法寻求周期. 被除数中“1”的个数 1 2 3 4 5 6 7 … 除以6后余数的末位数字 1 5 3 1 5 3 1 … 除以6后商的末位数字 0 1 8 5 1 8 5 … 通过表格我们可以发现,余数出现的周期为3(1,5,3);第1个“1”上相对应的商为“0”,从第二个“1”开始,商的末位数字的周期为3(1,8,5) 因为,所以这个数除以6后余数的末位数字是3; 因为…2,所以这个数除以6后商的末位数字是8. 【巩固】 有一个1111位数,各位数字都是1,这个数除以6,余数是几?商的末位数字是几? 【解析】 余数出现的周期为3(1,5,3);第1个“1”上相对应的商为“0”,从第二个“1”开始,商的末位数字的周期为3(1,8,5),因为…1,所以这个数除以6后余数的末位数字是1;因为,所以这个数除以6后商的末尾数字是5. 【例 13】 求的个位数字. 【解析】 由1284=32知,的个位数与的个位数相同,等于6。由292=14……1知,的个位数与的个位数相同,等于9.因为6<9,在减法中需向十位借位,所以所求个位数字为16-9=7. 【巩固】 算式的得数的尾数是几? 【解析】 这是一道很经典的题目,分别找规律,我们只看个位数就够了: 7:7,9,3,1……,367/4=91…3,个位数是3 ; 2:2,4,8,6……,762/4=190…2,个位数是4 ; 3:3,9,7,1……,123/4=30…3,个位数是7 ; 因此个位数:(3+4)7=49 . 板块三、日期中的周期问题 【例 14】 阳历1978年1月1日是星期日,阳历2000年1月1日是星期几? 【解析】 每四年有一个闰年,闰年的年份被4整除,所以从1978年至1999年共有17个平年,5个闰年,由此可以算出总天数,用总天数除以7,余1是星期一,余2是星期二,依次类推 (天),(星期)……6(天),所以,阳历2000年1月1日是星期六. 【巩固】 1999年的元旦是星期五,那么据此你知道2005年的元旦是星期几吗? 【解析】 00、04是闰年,01、02、03、05是平年,一共度过了:3656+2=2192(天),21927=313…1, 2005年的元旦是星期六 【巩固】 小童的生日是6月27日,这一年的6月1日是星期六,小童的生日是星期几呢? 【解析】 从日历上可以看到,每个星期有7天,就是以7天为一个周期不断地重复.6月1日是星期六,那么再过7天,即6月8日,还是星期六;如果再过14天,即6月15日,还是星期六,所以要知道6月27日是星期几,首先要求出6月27日是6月1日后的第几天,(天);因为每个星期都是7天,也就是周期为7,所以(星期)…5(天).这样,从6月1日开始经过3个星期,最后一天是星期六,从这最后一天再过5天就是星期四. 【巩固】 今天是星期三,那么从明天起第365天是星期几? 【解析】 题中所说的第365天,不包括今天在内,是说“从今天之后的第365天”. (星期)…1(天),所以,从明天起,到第365天是星期三. 【巩固】 2002年的6月1日是星期六,那么这一年的10月1日是星期几呢? 【解析】 我们只要算出6月1日到10月1日要经过多少天,然后按照7天为一个周期,运用周期变化规律解答.由于6月1日与10月1日这两个日子不在同一个月里,就要考虑经过月份是什么月?一共有多少天?因为6月有30天,7月有31天,8月有31天,9月有30天,所以6月1日到10月1日要经过的天数:(天),…4 ,这个周期从周六开始,那么第4天正好是星期二. 【巩固】 2008年3月3号是星期一,算一算2008年8月8号奥运会开幕是星期几? 【解析】 首先我们应该算出2008年3月3号到8月8号一共有多少天,(天).按照7天为一个周期,…5,这个周期的第一天是星期一,那么第五天就应该是星期五,所以2008年8月8号奥运会开幕是星期五. 【巩固】 2008年的“六一”儿童节是星期日,2008年的“十一”是星期几? 【解析】 (天)…4,这个周期从周日开始,那么第4天正好是星期三. 【巩固】 1998年元旦是星期五,l999年元旦是星期几?2000年元旦是星期几?2001年元旦是星期几? 【解析】 l998年是平年,1998年元旦到l999年元旦共365天.,即l998年元旦到1999年元旦要经过52个星期又l天,1998年元旦是星期五,经过52个星期还是星期五,再经过1天便是星期六,因此l999年元旦是星期六.1999年元旦到2000年元旦也是365天,也要经过52周又l天,故2000年元旦是星期日.因为2000年是闰年,2月份有29天,故2000年元旦到2001年元旦共366天,,2000年元旦是星期日,经过52周还是星期日,再过2天便是星期二,即2001年元旦是星期二. 【巩固】 图中是2002年5月份日历表.⑴该月8号是星期几?⑵该年6月l日是星期几?该年l0月1日是星期几?⑶2004年5月l日是星期几? 【解析】 一个星期有7天,因此7天为一个周期.从表中我们可以看出l号~7号是一个周期,1号是第一个循环的第一天,7号是第一个循环的最后一天,8号是第二个循环的第一天,计算天数时为了方便,我们可以采取“算头不算尾”或“算尾不算头”的方法.在算该年6月1日、10月1日、2004年5月1日是星期几时,要注意应准确地算出各是经过了多少天,这其中不要忘记2004年是闰年,共有366天. ⑴该月的8号是星期三. ⑵从5月1日到5月31日共31天,,所以6月1日是星期六.从5月1日到9月30日共l53天.,所以10月1日是星期二. ⑶从2002年的5月1日到2004年的4月30日共731天.,所以2004年5月1日是星期六. 【例 15】 小区里的李奶奶腿脚不方便,方方、圆圆、长长三名同学做好事,每天早晨轮流为李奶奶取牛奶.方方第一次取奶是星期一,那么,他第100次取奶是星期几? 【解析】 21天内,每人取奶7次,方方第8次取奶又是星期一,即每取7次奶为一个周期.…2,所以方方第100次取奶是星期四. 【巩固】 甲、乙、丙、丁四位医生依次每天轮流到农村卫生所义诊.甲第30次义诊是星期三,那么当丙首次在周日义诊时,丁医生已经下乡义诊几次了? 【解析】 甲第30次义诊是在总次数的第429+1=117(次),1177=16……5,从周三往前数5天,由周期性知甲第一次义诊时间是在星期六,甲前7次义诊分别是星期六、三、日、四、一、五、二 . 丙在周日义诊是甲周五义诊之后的两天,所以那是丙第6次去义诊.由于丁在丙后一天义诊,所以他已经去过5次. 【例 16】 在某个月中刚好有3个星期天的日期是偶数(双数),则这个月的5日是星期几? 【解析】 一个星期有7天,注意7是奇数(单数),所以任意两个相继星期天的日数奇偶性不同.于是在每个月从l日到28日这28天中,有个星期天,且其中有两个星期天的日期是偶数,从而题中第3个日期为偶数的星期天必为30日.由此可以推知,这个月的第1个星期天是日,那么,5日为星期三. 所以这个月的5日是星期三. 【巩固】 已知某月中,星期二的天数比星期三的天数多,而星期一的天数比星期日的天数多,那么这个月的5号是星期几? 【解析】 这道题表面看无从下手.实际上本题暗藏着一个重要条件:在一个月内,无论是星期几,它的天数只能是4或5,根据这个知识点,就可知道本月星期一,二都是5天,星期三,日都是4天,用列表法可以得到答案. 所以这个月的5号是星期五. 【巩固】 一个月最多有5个星期日,在一年的12个月中,有5个星期日的月份最多有几个月? 【解析】 1月1日是星期日,全年就有53个星期日。每月至少有4个星期日,53-412=5,多出5个星期日,在5个月中.即最多有5个月有5个星期日. 课后练习 练习1. ★○○○★★○○○★★○○○……这样的一排图形中第87个是什么图形,在87个图形中一共有多少个五角星? 【解析】 …2.第87个图形是圆形.(个). 练习2. 流水线上给小木球涂色的次序是:先5个红、再4个黄、再3个绿、在2个黑、再1个白,然后又依次是5红、4黄、3绿、2黑、1白……如此继续涂下去,到第2003个小球该涂什么颜色? 【解析】 小木球的涂色顺序是:“5红、4黄、3绿、2黑、1白”,也就是每涂过“5红、4黄、3绿、2黑、1白”循环一次,给小木球涂色的一个周期是,因此只要用2003除以15, …8根据余数是8就可以判断:第2003个小木球出现在上面所列一个周期中第8个,所以第2003个小球是涂黄色. 练习3. 如右图所示的数表中,从左往右依次看作五列,第99行右边第一个数是几? 【解析】 每7个数,分成两行一个周期,992=49……1,第98行中最大的那个数为:(497-1)2=684,所以第99行从左到右的数依次为:686、688、690 ,第99行右边第一个数是690 练习4. 1999名同学从前往后排成一列,按下面的规则报数:如果某名同学报的数是一位数,那么后一个同学就要报出这个数与9的和;如果某名同学报的数是两位数,那么后一个同学就要报出这个数的个位数与6的和。现让第一个同学报1,那么最后一名同学报的数是(   )。 【解析】 列出前几个数:1、10、6、15、11、10、6、15、11、10、6、… 可以看出除去第一个数之外后面每四个数一循环,所以(1999-1)4=499…2,那么最后一名同学报的数是6。 月测备选 测试1、黑珠、白珠共101颗,穿成一串,排列如下图。这串珠子中,最后一颗珠子应该是_____色的,这种颜色的珠子在这串中共有_____颗. 【解析】 观察图形可知从第二个珠子开始每隔3个出现一个黑色的,即4个一循环。所以:(101-1)4=25,判定最后一个为黑色,共有25颗。 测试2、按下面的摆法,摆一百个三角形,请问第100个三角形是什么颜色的?在这100个三角形中有多少个白色的三角形? △△△▲▲▲△△△▲▲▲△△△▲▲▲…… 【解析】 从图中可以看出,按照6个为一个周期,因为…4,所以第100个三角形应该是这一个周期当中的第四个,应该是黑色的.每个周期里有3个白色的,一共有16个周期就有48个白色三角形,余下的4个三角形中还有3个白色的,所以一共有个. 测试3、某个早晨,容器中有200个细菌,白天有光照,容器中的细菌将减少65个,夜间无光照,容器中的细菌将增加40个.则在第几个白天,容器中的细菌全部死亡! 【解析】 该题属于周期中的减少问题,即不完全按照周期回归.一昼夜细菌减少65-40=25个,20025=8天,该解法有误.第6天的时候剩余细菌:200-256=50,则第7天就可. 测试4、同学们在科技馆参加活动,谁最先参加游戏呢?同学们想了个好办法,大家排成一排1~2报数,报2的同学再1~2报数,这样依次进行下去,最后报2的这名同学先玩,如果这列一共有12人,最先玩的同学是这一列中的第几个? 【解析】 第一次1~2报数,报2的是第2,4,6,8,10,12这几个同学,这些同学再1~2报数,报2的是第4,8,12这三名同学,最后这三名同学再1~2报数,就只剩下第8个同学是报2,所以最先玩的这个同学是这列中的第8个.
展开阅读全文
相关搜索
温馨提示:
taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。

当前位置:首页 > 教育专区 > 教案示例


本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁