资源描述
-/
小学数学的基本公式和常用的等量关系
常用的单位及进率
时间单位
1世纪=100年 1年=12月
大月(31天)有:1月、3月、5月、7月、8月、10月、12月
小月(30天)的有:4月、6月、9月、11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒
长度单位:
1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
面积单位:
1平方千米=100公顷 1公顷=10000平方米
1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
体积单位
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1升=1立方分米=1000毫升 1毫升=1立方厘米
重量单位
1吨=1000千克 1千克= 1000克= 1公斤
数学中常用的字母代表的含义
C周长 S面积 a边长 V体积 a棱长 h 高
小学数学图形的基本公式:
1、长方形的周长=(长+宽)2 C=(a+b)2
2、正方形的周长=边长4 C=4a
3、长方形的面积=长宽 S=ab
4、正方形的面积=边长边长 S=aa
5、三角形的面积=底高2 S=ah2
6、平行四边形的面积=底高 S=ah
7、梯形的面积=(上底+下底)高2 S=(a+b)h2
8、直径=半径2 半径=直径2 d=2r r= d2
9、圆的周长=圆周率直径=圆周率半径2 c=πd =2πr
10、圆的面积=圆周率半径半径 ?=πrr
11、长方体的表面积=(长宽+长高+宽高)2 S=2(ab+ah+bh)
12、长方体的体积 =长宽高 V =abh
13、正方体的表面积=棱长棱长6 S =6a a
14、正方体的体积=棱长棱长棱长 V=a a a
15、圆柱的侧面积=底面圆的周长高 S=ch
16、圆柱的表面积=上下底面面积+侧面积 S=2πr +2πrh
17、圆柱的体积=底面积高 V=Sh
18、圆锥的体积=底面积高3 V=Sh3
数学中常用的运算定律
1、加法交换律:a+b=b+a
2、加法结合律:a + b +c= a + (b+c)
3、乘法交换律:a b = b a
4、乘法结合律:a b c = a (b c)
5、乘法分配律:a b + a c = a b + c
6、除法的性质:a b c = a (b c)
基本的等量关系
1、 每份数份数=总数
总数每份数=份数
总数份数=每份数
2、 1倍数倍数=几倍数
几倍数1倍数=倍数
几倍数倍数=1倍数
3、相遇问题
相遇路程=速度和相遇时间
相遇时间=相遇路程速度和
速度和=相遇路程相遇时间
3、速度时间=路程
路程速度=时间
路程时间=速度
4、 单价数量=总价
总价单价=数量
总价数量=单价
5、 工作效率工作时间=工作总量
工作总量工作效率=工作时间
工作总量工作时间=工作效率
6、 加数+加数=和
和-一个加数=另一个加数
7、 被减数-减数=差
被减数-差=减数
差+减数=被减数
8、 因数因数=积
积一个因数=另一个因数
9、 被除数除数=商
被除数商=除数
商除数=被除数
10、总数总份数=平均数
11、和差问题
(和+差)2=大数
(和-差)2=小数
12、和倍问题
和(倍数-1)=小数
小数倍数=大数
13、差倍问题
差(倍数-1)=小数
小数倍数=大数
数学应用题中常见数量关系式子
追及问题
追及距离=速度差追及时间
追及时间=追及距离速度差
速度差=追及距离追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)2
水流速度=(顺流速度-逆流速度)2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量溶液的重量=浓度
溶液的重量浓度=溶质的重量
溶质的重量浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润成本=(售出价成本-1)
涨跌金额=本金涨跌百分比
折扣=实际售价原售价 (折扣<1)
利息=本金利率时间
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长株距-1
全长=株距(株数-1)
株距=全长(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长株距
全长=株距株数
株距=全长株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长株距-1
全长=株距(株数+1)
株距=全长(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长株距
全长=株距株数
株距=全长株数
盈亏问题
(盈+亏)两次分配量之差=参加分配的份数
(大盈-小盈)两次分配量之差=参加分配的份数
(大亏-小亏)两次分配量之差=参加分配的份数
数学中基本性质和基本概念
除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
0除以任何不是0的数都得0。
简便乘法:被乘数、乘数末尾有0的乘法,可以先把0前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
有余数的除法: 被除数=商除数+余数
等式:等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
方程式:含有未知数的等式叫方程式。
一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。。
代数: 代数就是用字母代替数。
代数式:用字母表示的式子叫做代数式。如:3x =ab+c
分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数乘整数方法:用分数的分子和整数相乘的积作分子,分母不变。
分数乘分数方法:用分子相乘的积作分子,分母相乘的积作为分母。
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
倒数的概念:1.如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。1的倒数是1,0没有倒数。
分数除以整数(0除外),等于分数乘以这个整数的倒数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小
分数的除法则:除以一个数(0除外),等于乘这个数的倒数。
真分数:分子比分母小的分数叫做真分数。
假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
带分数:把假分数写成整数和真分数的形式,叫做带分数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
比:两个数相除就叫做两个数的比。如:25或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
比例:表示两个比相等的式子叫做比例。如3:6=9:18
比例的基本性质:在比例里,两外项之积等于两内项之积。
正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:xy = k( k一定)或k / x = y
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
把小数化成百分数方法:只要把小数点向右移动两位,同时在后面添上百分号。把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
把分数化成百分数方法:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后(分子除以分母)
把百分数化成分数方法:先把百分数改写成分数,能约分的要约成最简分数。
倍数与约数
最大公约数:几个数公有的约数,叫做这几个数的公约数。公因数有有限个。其中最大的一个叫做这几个数的最大公约数。
最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。公倍数有无限个。其中最小的一个叫做这几个数的最小公倍数。
互质数: 公约数只有1的两个数,叫做互质数。相临的两个数一定互质。两个连续奇数一定互质。1和任何数互质。
通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。
最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。
质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。
分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。 例如6=23
倍数特征:
2的倍数的特征:个位是0,2,4,6,8的数。
3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。
5的倍数的特征:个位是0,5。
4(或25)的倍数的特征:末2位是4(或25)的倍数。
8(或125)的倍数的特征:末3位是8(或125)的倍数。
7(11或13)的倍数的特征:末3位与其余各位之差(大-小)是7(11或13)的倍数。
17(或59)的倍数的特征:末3位与其余各位3倍之差(大-小)是17(或59)的倍数。
19(或53)的倍数的特征:末3位与其余各位7倍之差(大-小)是19(或53)的倍数。
23(或29)的倍数的特征:末4位与其余各位5倍之差(大-小)是23(或29)的倍数。
有倍数关系的两个数,最大公约数为较小数,最小公倍数为较大数。
有互质关系的两个数,最大公约数为1,最小公倍数为乘积。
两个数分别除以他们的最大公约数,所得商互质。
两个数的与最小公倍数的乘积等于这两个数的乘积。
两个数的公约数一定是这两个数最大公约数的约数。
1既不是质数也不是合数。
用6去除大于3的质数,结果一定是1或5。
展开阅读全文
相关搜索