天大物理化学(第五版)课后习题集规范标准答案.doc

举报
资源描述
*- 天津大学物理化学(第五版)习题答案天津大学物理化学(第五版)习题答案 32. 双光气分解反应为一级反应。将一定量双光气迅速 引入一个 280 C 的容器中,751 s 后测得系统的压力为 2.710 kPa;经过长时间反 应完了后系统压力为 4.008 kPa。305 C 时重复试验,经 320 s 系统压力为 2.838 kPa;反应完了后系统压力为 3.554 kPa。求活化能。 解:根据反应计量式,设活化能不随温度变化 33. 乙醛(A)蒸气的热分解反应如下 518 C 下在一定容积中的压力变化有如下两组数据: 纯乙醛的初压 100 s 后系统总压 53.32966.661 26.66430.531 (1)求反应级数,速率常数; (2)若活化能为,问在什么温度下其速率常数为 518 C 下的 2 倍: *- 解:(1)在反应过程中乙醛的压力为,设为n级反应,并令m = n - 1,由于在两组实验中kt相同,故有 该方程有解(用 MatLab fzero 函数求解) m = 0.972,。反应 为 2 级。速率常数 (3) 根据 Arrhenius 公式 34. 反应中,在 25 C 时分别为和 ,在 35 C 时二者皆增为 2 倍。试求: (1)25 C 时的平衡常数。 (2)正、逆反应的活化能。 (3)反应热。 解:(1) *- (2) (3) 35. 在 80 % 的乙醇溶液中,1-chloro-1-methylcycloheptane 的水解为一级反应。 测得不同温度t下列于下表,求活化能和指前因子 A。 0253545 解:由 Arrhenius 公式,,处理数据如下 3.66103.35403.24523.1432 -11.4547-8.0503-6.9118-5.8362 *- 36. 在气相中,异丙烯基稀丙基醚(A)异构化为稀丙基丙酮(B)是一级反应。其速率 常数k于热力学温度T的关系为 150 C 时,由 101.325 kPa 的 A 开始,到 B 的分压达到 40.023 kPa,需多 长时间。 解:在 150 C 时,速率常数为 37. 某反应由相同初始浓度开始到转化率达 20 %所需时间,在 40 C 时为 15 min,60 C 时为 3 min。试计算此反应的活化能。 解:根据 Arrhenius 公式 由于对于任意级数的化学反应,如果初始浓度和转化率相 同,则 ,因此 *- 38. 反应的速率方程为 (1);300 K 下反应 20 s 后 ,问继续反应 20 s 后 (2)初始浓度同上,恒温 400 K 下反应 20 s 后,,求活化 能。 解:反应过程中,A 和 B 有数量关系,方程化为 (2)400 K 下 39. 溶液中某光化学活性卤化物的消旋作用如下: *- 在正、逆方向上皆为一级反应,且两速率常数相等。若原始反应物为纯的右旋物质, 速率常数为,试求: (1) 转化 10 %所需时间; (2) 24 h 后的转化率。 解:速率方程为 该方程的解为 (2) 40. 若为对行一级反应,A 的初始浓度为;时间为t时,A 和 B 的 浓度分别为和。 (1)试证 *- (3) 已知为,为,,求 100 s 后 A 的转化率。 证:对行反应速率方程的积分形式为 转化率: 41. 对行一级反应为。 (1)达到的时间为半衰期,试证; (2)若初始速率为每分钟消耗 A 0.2 %,平衡时有 80 %的 A 转化为 B,求。 证:对行一级反应速率方程的积分形式为 *- (2),因此 42. 对于两平行反应: 若总反应的活化能为E,试证明: 证明:设两反应均为n级反应,且指前因子相同,则反应速率方程 为 *- 上式对T求导数 43. 求具有下列机理的某气相反应的速率方程 B 为活泼物资,可运用稳态近似法。证明此反应在高压下为一级,低压下为 二级。 解:推导如下: , 根据稳态近似法 代入上式整理得到 高压下, *- 低压下: 44. 若反应有如下机理,求各机理以表示的速率常数。 (1) (2) (3) 解: (1)应用控制步骤近似法, (2) (4) 应用控制步骤近似法,反应的速率等于第一步的速率,而 AB 的生成速率为 总反应速率的 2 倍: *- 45. 气相反应的机理为 试证: 证:应用稳态近似法 46. 若反应的机理如下,求以表示的速率方程。 *- 解:应用控制步骤法近似 47. 已知质量为m的气体分子的平均速率为 求证同类分子间 A 对于 A 的平均相对速率。 证:根据分子运动论,气体分子 A 与 B 的平均相对速率为 48. 利用上题结果试证同类分子 A 与 A 间的碰撞数为 *- 证:对于同类分子 49. 利用上题结果试证:气体双分子反应的速率方程(设概率因子P = 1)为 证:设该反应的活化能为,则 50. 乙醛气相分解为二级反应。活化能为,乙醛分子直径为 。 (1)试计算 101.325 kPa、800 K 下的分子碰撞数。 (2)计算 800 K 时以乙醛浓度变化表示的速率常数k。 解:(1)根据 48 题的结果 *- (2)由 49 题的结果知 51. 若气体分子的平均速率为 ,则一个 A 分子在单位时间内碰撞其它 A 分子的 次数 试证每一个分子在两次碰撞之间所走过的平均距离为 式中:;称为平均自由程。 证:分子在单位时间走过的距离除以单位时间内的碰撞数即为两次碰 撞间走过的距离,即平均自由程 *- 52. 试由及 von’t Hoff 方程证明 (1) (2)对双分子气体反应 证:根据 Arrhenius 方程, 53. 试由式(11.9.10)及上题的结论证明双分子气相反应 证:根据式(11.9.10) *- 而: 54. 在 500 K 附近,反应的指前因子 ,求该反应的活化熵。 解:根据上题的结果 55. 试估算室温下,碘原子在乙烷中进行原子复合反应的速率常数。已知 298 K 时乙烷的粘度为。 解:自由基复合反应的活化能可认为近似等于零,故该反应为扩散控制。 *- 56. 计算每摩尔波长为 85 nm 的光子所具有的能量。 57. 在波长为 214 nm 的光照射下,发生下列反应: 当吸收光的强度,照射 39.38 min 后,测得 。求量子效率。 解:生成的量等于反应掉的量 58. 在的光化学反应中,用 480 nm 的光照射,量子效率约为, 试估算每吸收 1 J 辐射能将产生若干摩尔? 解:产生 1 mol HCl 消耗 0.5 mol H2,根据量子效率的定义 *- 59. 以为催化剂,将乙烯氧化制乙醛的反应机理如 11.14 中络合催化部 分所述。试由此机理推导该反应的速率方程: 推导中可假定前三步为快速平衡,第四步为慢步骤。 略 60. 计算 900 C 时,在 Au 表面的催化下分解经 2.5 h 后 N2O 的压力,已知 N2O 的初压为 46.66 kPa。计算转化率达 95 %所需时间。已知该温度下。 解:根据速率常数的单位知,该反应为一级反应 61. 25 C 时,SbH3(g) 在 Sb 上分解的数据如下: 0510152025 101.3374.0751.5733.1314.159.42 试证明此数据符合速率方程 计算k。 *- 解:用二次曲线拟合该数据,得 0510152025 0.08850.97311.85772.74233.62694.5115 4.61844.30503.94293.50042.64972.2428 1.78401.62311.43141.19390.88180.4256 用公式拟合,得到 因此, 62. 1100 K 时在 W 上的分解数据如下: 的初压 35.3317.337.73 半衰期 7.63.71.7 试证明此反应为零级反应,求平均k。 证:对数据的分析可以看出,半衰期与初始压力成正比,则正是零级反应的特征。 分别为 速率常数的平均值 。 *- 63,64 略。 第十章 界面现象 第十二章 胶体化学------基本概念 11、、 表面吉布斯自由能和表面张力 1.界面 2.界面现象 3.比表面(Ao) 4.表面功 5.表面张力 surface tension 表面吉布斯自由能和表面张力 1 1、界面:、界面: 密切接触的两相之间的过渡区(约几个分子的厚度)称为界面界面(interface),通 常有液-气、液-固、液-液、固-气、固-液等界面,如果其中一相为气体,这 种界面称为表面表面(surface)。 2 2、界面现象:、界面现象: 由于界面两侧的环境不同,因此表面层的分子与液体内的分子受力不同: 1.液体内部分子的吸引力是对称的,各个方向的引力彼此抵销,总的受力效果是合力为零; 2.处在表面层的分子受周围分子的引力是不均匀的,不对称的。 由于气相分子对表面层分子的引力小于液体内部分子对表面层分子的引力,所以液体表 面层分子受到一个指向液体内部的拉力,力图把表面层分子拉入内部,因此液体表面有自动 收缩的趋势;同时,由于界面上有不对称力场的存在,使表面层分子有自发与外来分子发生 化学或物理结合的趋势,借以补偿力场的不对称性。由于有上述两种趋势的存在,在表面会 发生许多现象,如毛细现象、润湿作用、液体过热、蒸气过饱和、吸附作用等,统界面现象界面现象。 *- 3 3、比表面(、比表面(AoAo)) 表示多相分散体系的分散程度,定义为:单位体积(也有用单位质量的)的物质所具有的表 面积。用数学表达式,即为: A0=A/V 高分散体系具有巨大的表面积。下表是把一立方厘米的立方体逐渐分割成小立方体时, 比表面的增长情况。高度分散体系具有巨大表面积的物质系统,往往产生明显的界面效应, 因此必须充分考虑界面效应对系统性质的影响。 边长 l/cm立方体数表面积 A/cm2比表面 A0/cm-1线性大小与此相近的体系 1166 —— 10-1103610610 —— 10-210661026102 牛奶内的油滴 10-310961036103 —— 10-4(=1μm)101261046104 —— 10-5101561056105 藤黄溶胶 10-6101861066106 金溶胶 10-7(=1nm)102161076107 细分散的金溶胶 4 4、表面功、表面功 在温度、压力和组成恒定时,可逆地使表面积增加 dA 所需要对体系做的功,称 为表面功(ω’)。 -δω’=γdA-δω’=γdA (γ:表面吉布斯自由能,单位:J.m-) 5 5、表面张力、表面张力 观察界面现象,特别是气-液界面的一些现象,可以觉察到界面上处处存在着一种张力, 称为界面张力(interface tension)或表面张力(surface tension)。它作用在表面的边 界面上,垂直于边界面向着表面的中心并与表面相切,或者是作用在液体表面上任一条线两 侧,垂直于该线沿着液面拉向两侧。如下面的例子所示: *- 计算公式: -δω=-δω= γdAγdA ……(1) 式中 γ 是比例常数,在数值上等于当 T、p 及组成恒定的条件下,增加单位表面积时所 必须对体系作的非膨胀功。 我们从另一个角度来理解公式(1)。先请看下面的例子。 从上面的动画可知:肥皂膜将金属丝向上拉的力就等于向下的重力(W1+W2),即为 F=2γlF=2γl ……(2) 这里称为表(界)面张力。表面自由能的单位为 Jm-。由于 J=Nm ,所以 γ 的单位可 表示为 Nm-1,N 为牛顿,是力的单位,所以表面自由能也可以看作是垂直于单位长度相界 面上的力,即表面张力。 下表是一些纯物质及液-液界面的张力。 液 体温 度 T/K γ/Nm-1 液 体温 度 T/K γ/Nm-1 液体—蒸气界面 2930.07288 2980.07214 水 3030.07140 有机物质 二甲亚砜 2930.04354 四氯化碳 2980.02643 二甲基苯胺 2930.03656 甲醇 2930.02250 硝基甲烷 2930.03266 乙醇 2930.02239 2930.02888 3030.02155 苯 3030.02756 辛烷 2930.02162 甲苯 2930.02852 庚烷 2930.02014 氯仿 2980.02667 乙醚 2980.02014 丙酸 2930.02669 全氟甲基环 已烷 2930.01570 丁酸 2930.02651 全氟庚烷 2930.01319 低沸点物质 氦 He 10.000365 氩 Ar 900.01186 氢 H2 200.00201 甲烷 1100.01371 D2200.00354 氧 O2 770.01648 氮 N2 750.00941 乙烷 180.6 *- 22、、 弯曲表面下的附加压力和蒸气压 1.弯曲表面下的压力 2.亚稳状态与新相生成 弯曲表面下的附加压力和蒸气压 1 1、弯曲表面下的压力、弯曲表面下的压力 由于表面张力的作用,在弯曲表面下的液体于平面不同,它受到附加的压力(Ps)。 *. 如果液面是水平的,则表面张力 f 也是水平的。当平衡时,沿周界的表面张力互相抵消。 此时液体表面内外压相等,而且等于表面上的外压力 P0。 *. 如果液面是弯曲的,则沿 AB 周界面上的表面张力 f 不是水平的。当平衡时,表面张力将 有一合力。 Δ 当液面为凸形时,合力指向液体内部。 表面内部的液体分子所受压力必大于外 部压力。 Δ 当液面为凹形时,合力指向液体外部。液体内部的压力将小于外面的压力。 *- 2 2、亚稳状态与新相生成、亚稳状态与新相生成 1 1)). . 亚稳状态亚稳状态 一定温度下,当蒸气分压超过该温度下的饱和蒸气压,而蒸气仍不凝结的现象叫蒸气的 过饱和现象过饱和现象(supersaturated phenomena of vapor),此时的蒸气称为过饱和蒸气过饱和蒸气 (supersaturated vapor)。 在一定温度、压力下,当溶液中溶质的浓度已超过该温度、压力下的溶质的溶解度,而 溶质仍不析出的现象叫溶液的过饱和现象溶液的过饱和现象(supersaturated phenomena of solution),此 时的溶液称为过饱和溶液过饱和溶液(supersaturated solution)。 在一定压力下,当液体的温度高于该压力下的沸点,而液体仍不沸腾的现象,叫液体的液体的 过热现象过热现象(superheated phenomena of liquid),此时的液体称为过热液体过热液体(superheated liquid)。 在一定压力下,当液体的温度已低于该压力下液体的凝固点,而液体仍不凝固的现象叫 液体的过冷现象液体的过冷现象(supercooled phenomena of liquid),此时的液体称为过冷液体过冷液体 (supercooled liquid)。 上述过饱和蒸气、过饱和溶液、过热液体、过冷液体所处的状态均属亚稳状态亚稳状态 (metastable state)。它们不是热力学平衡态,不能长期稳定存在,但在适当的条件下能 稳定存在一段时间,故称为亚稳状态。 2 2)). . 新相生成的热力学与动力学原理新相生成的热力学与动力学原理 亚稳态之所以能够出现,有热力学和动力学两方面的原因。 从热力学上看,上述所有过程都涉及从原有的旧相中产生新相的过程,使原有的一般热 力学系统变成一个瞬间存在的高度分散系统。用 dG = —SdT+Vdp+γdAs(纯液体为单组分系 统)分析,定温、定压下上述过程 dGT,p = γdAs>0,是一个非自发过程。 从动力学上看,上述过程新相核心的形成速率与新相核心的的半径有如下关系: 新相生成速率 ∝ r2exp(-Br2) B 为经验常数 该式表明,新相形成速率会随 r 的增加而经过一个极大值,最大速率对应的 r 称为临界临界 *- 半径半径(critical radius),只有能克服由临界半径所决定的能垒的那些分子才能聚到核上, 而长大成新相。 人工降雨、防止暴沸、防止过饱和溶液生成细小晶粒影响过滤,从开尔文公式我们可以 理解上述现象的实质——亚稳状态。 33、、 液体界面的性质 1.液体的铺展 2.表面张力与溶质的关系 3.两亲性质 4.特劳贝(Traube)规则 5.γ-c曲线 液体界面的性质 1 1、液体的铺展:、液体的铺展: 某液体1是否能在另一互不相溶的液体2上铺展开来,取决于各液体本身的表面张力 和(3为气相)以及两液体之间的界面张力 的大小。下图是液滴1在另一液体 2上的情况。 *- 图中3为气相。设考虑三个相接界A点处的 和 的作用是力图维持液滴成球型 (由于地心引力可能成透镜形状),而 的作用则是力图使液体铺展开来。因此如果 则液体1可以在液体2上铺展开来。若液体2是水,则一般很大,在这种界面上,大多数有 机液体1都可铺成薄膜。 2. 表面张力与溶质的关系表面张力与溶质的关系 表面张力与溶质的关系: 水的表面张力因加入溶质形成溶液而改变。 有些溶质加入水中后使溶液表面张力升高。例如无机盐、不挥发性的酸碱(如 H2SO4、NaOH)等, 由于这些物质的离子,对于水分子的吸引而趋向于把水分子拖入溶液内部,此时在增加单位 表面积所作的功中,还必须包括克服静电引力所消耗的功,因此溶液的表面张力升高。这些 物质被称为非表面活性剂非表面活性剂。有些溶质加入水中后使溶液表面张力下降,能使水的表面张力降 低的溶质都是有机物。我们习惯上把那些明显降低水的表面张力的具有两亲性质的有机化合 物叫做表面活性剂表面活性剂。 3.3. 两亲性质两亲性质 所谓两亲分子,以脂肪酸为例,亲水的-COOH 基使脂肪酸分子有进入水中的趋势,而憎 水的碳氢链则竭力阻止其在水中溶解。这种分子就有很大的趋势存在于两相界面上,不同基 团各选择所亲的相而定向,因此称为两亲分子。进入或“逃出”水面趋势的大小,决定于分 子中极性基与非极性基的强弱对比。对于表面活性物质来说,非极性成分大,则表面活性也 大。由于憎水部分企图离开水而移向表面,所以增加单位表面所需的较之纯水当然要小些, 因此溶液的表面张力明显降低。 4.4. 特劳贝特劳贝(Traube)(Traube)规则规则 特劳贝(Traube)规则: 特劳贝在研究脂肪酸同系物的表面活性物质时发现:同一种溶质在底浓度时表面张力的 降低效应和浓度成正比。不同的酸在相同的浓度时,对于水的表面张力降低效应(表面活性) 随碳氢链的增长而增加。每增加一个-CH2-,其表面张力效应平均可降低约 3.2 倍。如下图所 示: *- 其他脂肪醇、胺、酯等也有类似的情况。 5.5. γ-γ-c c曲线曲线 稀溶液曲线的分类: 特劳贝(Traube)规则有一定的限制,不能包括所有的表面张力变化的情况。根据实验, 稀溶液的 曲线大致分为以下三类,如下图所示: *- 1. 此类曲线的特征是溶质浓度增加时,溶液的表面张力随之下降。 大多数非离子型的有机化合物如短链脂肪酸、醇、醛类的水溶液都有此行为。 2. 当溶质的浓度增加时,溶液的表面张力随之上升。 3. 这类曲线的特征是 ,它与曲线 1 不同。当溶液很稀时,溶液表面张力随浓度的增 加而急骤下降随后大致不随浓度而变。 1、3 类溶液的溶质都具有表面活性,能使水的表面张力下降,但 3 类物质(即表面 活性剂)的表面活性较高,很少量就使溶液表面张力下降至最低值。 44 、不溶性表面膜 1.单分子层表面膜 2.单分子层表面膜的利用 不溶性表面膜 *- 1.1. 单分子层表面膜单分子层表面膜 单分子层表面膜: 1765 年,富兰克林(Franklin)观察到油滴铺展在水面上时,成为很薄的油层,其厚度 约为 2.5nm,其后,波克尔斯(Pockel)和瑞利(Rayleigh)又发现某些难溶物质铺展在液 体的表面上所形成的膜,确实是只有一个分子的厚度,所以这种膜就被称为单分子层表面膜单分子层表面膜 (monolayer)。 2.2. 单分子层表面膜的利用单分子层表面膜的利用 单分子层表面膜的利用: 在油滴铺展过程中,如果在水面上有长度为 l 的非常薄的浮片,由于不溶物分子在水面 上的自由运动,对单位浮片会有一种推动力 ,使浮片移动距离为 ,因此对浮片所做的 功为。当浮片移动了 以后, 不溶物的膜增加的面积为 ,所以体系的吉布斯自由能减少了 ,这就是体系所做 的功。 其中 是纯水的表面张力, 是加入不溶物后的表面张力。所以 称为表面压。因为> ,所以浮片被推向纯水一边。 1917 年兰缪尔根据以上原理设计了直接测定表面压的仪器——兰缪尔膜天平。兰缪尔膜 天平的灵敏度比一般测表面张力的灵敏度大 10 倍左右,例如测表面张力最好的准确度能达到 0.1%,对于水可以测准到 110-4 Nm-1,而用兰缪尔膜天平测表面压,则可以测准到 110-5 Nm-1。 5 5、、 液-固界面现象 1.粘附功、浸湿功、铺展系数 2.接触角与润湿作用 液-固界面现象 1.1. 粘附功、浸湿功、铺展系数粘附功、浸湿功、铺展系数 1).粘附功: 在恒温恒压可逆条件下,将气-液与气-固界面转变成液-固界面,如图所示: *- 设当各个界面都是单位面积时,从热力学得角度,该过程的吉布斯自由能的变化值为: 式中、 和 分别为气-固、气-液和液-固的表面吉布斯自由能。Wa 称为粘附功粘附功 (Work of adhension),它是液、固粘附时,体系对外所做的最大功。Wa 值越大,液体愈容 易润湿固体,液、固界面结合得愈牢固。 对于两个同样的液面转变成一个液柱的过程,吉布斯自由能变化为: Wc 称为内聚功内聚功(Work of cohesion),是液体本身结合牢固程度的一种量度。 2).浸湿功: 在恒温恒压可逆条件下,将具有单位表面积的固体浸入液体中,气-固界面转变成液-固 界面(在过程中液体的界面没有变化),如图所示: 该过程的吉布斯自由能的变化值为: *- Wi 称为浸湿功浸湿功(Work of immersion),它是液体在固体表面上取代气体能力的一种量度,有 时也被用来表示对抗液体表面收缩而产生的浸湿能力,故 Wi 又称为粘附张力。Wi≥0 是液体 浸湿固体的条件。 3).铺展系数: 铺展过程是表示当液-固界面在取代气-固界面的同时,气-液界面也扩大了同样的面积, 如图所示: 在恒温恒压下可逆铺展一单位面积时,体系吉布斯自由能的变化值为: 式中 S 称为铺展系数铺展系数(Spreading coefficient),当 S≤0 时,液体可以在固体表面自动铺 展。 2.2. 接触角与润湿作用接触角与润湿作用 1).接触角 设液体在固体表面上形成液滴,形成如下图所示的液滴 到达平衡时,在气、液、固三相交界处,气-液界面和固-液界面之间的夹角称为接触角接触角 (contact angle),用 θθ 表示。它实际是液体表面张力和液-固界面张力 间的夹角。 接触角的大小是由在气、液、固三相交界处,三种界面张力的相对大小所决定的。从接触角 的数值可看出液体对固体润湿的程度。 *- 2).润湿作用: 当、和 达平衡时以下关系: 上述方程称为杨杨(Young)方程。从杨方程我们可以得到下列结论: (1)如果(-)=,则 cosθ=1,θ=0o ,这是完全润湿的情况,在毛细管中 上升的液面呈凹型半球状就属于这一类。如果(-)>,则直到 θ=0o 还没有达到 平衡,因此杨方程不适用,但是液体仍能在固体表面铺展开来。 (2)如果(-)cosθ>0,θ<90o ,固体能为液体所润湿,见题图 (a)。 (3)如果<,则 cosθ90o ,固体不为液体所润湿,如水银滴在玻璃上, 见题图(b)。 根据杨方程,我们还可得到 Wa、Wi、S 用 cosθ 和 的表达式: 然后根据 cosθ 和 的实验测定值计算这些参数。 66、、 表面活性剂及其作用 1.表面活性剂 2.表面活性剂的分类与应用 3.表面活性剂的效率和有效值与其结构的关系 4.胶束、CMC 5.表面活性剂的 HLB 值 表面活性剂及其作用 1.1. 表面活性剂表面活性剂 *- 某些物质当它们以低浓度存在于一体系时,可被吸附在该体系的表面(界面)上,使这 些表面的表面自由能发生明显降低的现象,这些物质被称为表面活性剂表面活性剂。 表面活性剂分子是由具有亲水性的极性基团和具有憎水性的非极性基团所组成的有机物。 它的非极性憎水基团一般是 8 到 18 碳的直链烃,因此表面活性剂都是两亲分子 (amphiphilic molecule)。吸附在水表面时采用极性基团向着水,非极性基团脱离水的表面 定向。这种排列,使表面上不饱和的力场得到某种程度上的平衡,从而降低了表面张力(或 界面张力)。 表面活性剂现在广泛应用于石油、纺织、农药、采矿、食品、民用洗涤剂等各个领域。 由于工农业生产中主要是应用于水溶液,以改变水的表面活性,所以若不加以说明,就是指 降低水的表面自由能的表面活性剂。 2.2. 表面活性剂的分类与应用表面活性剂的分类与应用 1). 表面活性剂的分类: 表面活性剂有很多种分类方法,人们一般按照它的化学结构来分类 阴离子型表面活性剂, 如肥皂 RCOONa 阳离子型表面活性剂, 如胺盐 C18H37NH3+Cl- 两性表面活性剂,如 氨基酸型 离子型表面活性剂 { R-NH-CH2-COOH 表面活性剂 { 非离子型表面活性剂,如聚乙二醇 HOCH2[CH2OCH2]nCH2OH 2). 表面活性剂的应用: 表面活性剂有广泛的应用,主要有: (1) 润湿作用(wetting action)(渗透作用):用作润湿剂、渗透剂。 (2) 乳化作用(emulsification)、分散作用(dispersed action)、增溶作用 (solubilization):用作乳化剂、分散剂、增溶剂。 (3) 发泡作用(foaming action)、消泡作用(do any with foam):用作起泡剂、消泡剂。 (4) 洗涤作用(washing action):用作洗涤剂。 3.3. 表面活性剂的效率和有效值与其结构的关系表面活性剂的效率和有效值与其结构的关系 表面活性剂的结构及其效率及有效值的影响: 表面活性剂的效率效率是指使水的表面张力明显降低所需要的表面活性剂浓度。 表面活性剂的有效值是指该表面活性剂能够把水的表面张力可能降低到的最小值。 *- 长链而一端带有亲水基团的表面活性剂,降低水表面张力的效率很高,但在有效值上比 短链的同系物或具有支链、或亲水基团在中央的同系物差得多。离子型表面活性剂由于亲水 基团在水中电离而产生了静电排斥力,所以效率不高,但其有效值也不高。 上图说明了在低浓度区间,表面张力随表面活性剂浓度的增加而急骤下降,以后逐渐平 缓。此外还说明了表面活性剂的效率随链长的增加而增加,但长链的有效值比短链的同系物 低。同时,低浓度时碳-12 直链表面活性剂的效率比异构的带支链的表面活性剂效率高,而 有效值前者比后者低。因为表面活性剂有效值的高低,一方面在很大程度上取决于憎水基团 在表面活性剂分子中的粘结力,由于含同样碳原子数支链烃的粘结力比长链烃低,所以有支 链憎水基团的表面活性剂与其直链的同系物相比,更能降低水的表面张力;另一方面,离子 型表面活性剂的效率,还取决于两亲分子在水溶液中形成胶束的特性。 4.4.胶束、胶束、CMCCMC 胶束、CMC: 当离子型表面活性剂的浓度较低时,以单个分子形式存在,由于它的两亲性质,这些分 子聚集在水的表面上,使空气和水的接触面减少,引起水的表面张力显著降低。当溶解浓度 逐渐增大时,不但表面上聚集的表面活性剂增多而形成单分子层,而且溶液体相内表面活性 剂的分子也三三两两的以憎水基互相靠拢排列成憎水基向里,亲水基向外的胶束胶束。下图是形 成胶束的示意图,圆部分代表亲水基,方部分代表憎水基。 *- 形成胶束的最低浓度称为临界胶体浓度临界胶体浓度(critical micelle concentration,CMC)继续 增加表面活性剂的量(即增加其浓度),超过了临界胶束浓度后,溶液表面张力不再下降, 在表面张力与表面活性剂浓度的关系曲线上表现为水平线段。当达到临界胶束浓度后,胶束 会争夺溶液表面上的表面活性剂分子,因而影响表面活性剂的效率。 临界胶束浓度可用各种不同的方法进行测定,而采用的方法不同,测得的 CMC 值也有些 差别。因此一般所给的 CMC 值是一个临界胶束浓度的范围。在该浓度范围前后不仅表面张力 有显著的变化,溶液的其他物理性质也有很大的变化,例如渗透压、电导率、去污能力等, 测量这些物理性质的突变,可以得到 CMC 的范围。下图是某种表面活性剂的性质与浓度的关 系。 *- 5.5.表面活性剂的表面活性剂的 HLBHLB 值值 表面活性剂的 HLB 值: 比较表面活性剂分子中的亲水基团的亲水性和亲油基团的亲油性是一项衡量表面活性剂 效率的重要指标。亲水基团的亲水性和亲油基团的亲油性可以有两种类型的简单的比较方法。 一种方法是: 表面活性剂的亲水性 = 亲水剂的亲水性 - 憎水基的憎水性 另一种方法是用下式来表示其亲水性: 表面活性剂的亲水性 = 亲水剂的亲水性 / 憎水基的憎水性 我们已知,如果表面活性剂的亲水基团相同时,憎水基团碳链愈长(摩尔质量愈大),则 憎水性愈强,因此憎水性可以用憎水基的摩尔质量来表示;对于亲水基,由于种类繁多,用摩 尔质量来表示其亲水性不一定都合理。由于憎水基的憎水性和亲水基的亲水性在大多数情况 下不能用同样的单位来衡量,所以表示表面活性剂的亲水性不用第一种相减的方法,而用第 二种相比的方法来衡量。 基于以上观点,格里芬(Griffin)提出了用 HLB(hydrophile-lipophile balance 亲水 亲油平衡)值来表示表面活性物质的亲水性。 对于聚乙二醇型和多元醇型非离子表面活性剂的 HLB 值计算公式为: 石蜡完全没有亲水性,HLB=0;完全是亲水基的聚乙二醇 HLB=20,所以非离子型表面活 性剂的 HLB 介于 0~20 之间。 下表是表面活性剂 HLB 值与性质的对应关系: 表面活性物质加水后的性质HLB 值应用 0 2 不分散 { 4 分散得不好 6 } W/O 乳化剂 不稳定乳状分散体系 8 稳定乳状分散体系 10 } 润湿剂 半透明至透明分散体系 12 14 } 洗 涤 剂 16 透明溶液 { 18 } 增 溶 剂 } O/W 乳 化 剂 *- 除了格里芬的计算方法之外,戴维斯(Davies)曾尝试把 HLB 数目作为结构因子的总和 来处理,他试图把表面活性剂结构分解为一些基因,每个基因对 HLB 值都有一定的贡献。下 表是一些基团的 HLB 数目: 亲 水 基 团HLB 值亲 水 基 团HLB 值 -SO4Na38.7 -CH -COOK21.1 -CH2- -COONa19.1 -CH3 -N(叔胺) 9.4 =CH- } -0.475 酯(失水山梨醇环) 6.8 衍生的基团数目: 酯(自由的) 2.4 -(CH2-CH2-O)-0.33 -COOH2.1 -(CH2-CH2-CH-O)--0.15 -OH(自由的) 1.9 -O-1.3 -OH(失水山梨醇环) 0.5 7 加上每个基团 HLB 值的代数和,可以算出表面活性剂 HLB 值,即: HLB=7+Σ(HLB=7+Σ(各个基团的各个基团的 HLBHLB 值值) ) 77、、 固体表面的吸附 1.固体表面的吸附 2.吸附等温线 固体表面的吸附 1.1.固体表面的吸附固体表面的吸附 1).固体表面吸附的原因 在固体表面(即使是非常光滑的)有许多的缺陷,使固体表面的原子处在不对称的力场 中,而使固体表面不平衡,表面层具有过剩自由能。为使表面能降低,固体表面的原子会自 发地利用其未饱和的自由价来捕获气相或液相中的分子,使之在表面上浓集,形成固体表面固体表面 的吸附的吸附(adsorption)。按吸附作用力性质的不同,可将吸附分为物理吸附物理吸附(physisorption)和 化学吸附化学吸附(chemisorption)。它们的主要区别见下表: 物 理 吸 附化 学 吸 附 吸附力范德华力化学键力 吸附热 较小,近于液化热,一般在几百到几千 焦耳每摩尔
展开阅读全文
相关搜索
温馨提示:
taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。

当前位置:首页 > 教育专区 > 教案示例


本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁