2022年数学建模运输优化模型归类 .pdf

上传人:Q****o 文档编号:25942069 上传时间:2022-07-14 格式:PDF 页数:12 大小:125.48KB
返回 下载 相关 举报
2022年数学建模运输优化模型归类 .pdf_第1页
第1页 / 共12页
2022年数学建模运输优化模型归类 .pdf_第2页
第2页 / 共12页
点击查看更多>>
资源描述

《2022年数学建模运输优化模型归类 .pdf》由会员分享,可在线阅读,更多相关《2022年数学建模运输优化模型归类 .pdf(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2012 年数学建模培训第二次测试论文题目运输优化模型姓名马鹏系(院)数学系专业信息与计算科学、应用数学2012 年8 月27 日运输优化模型名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 12 页 - - - - - - - - - 1 摘要 在社会的经济生产活动中, 产地(厂家)与客户都会想方设法合理调拨资源、降低运输费用,实现利益最大化,完成资源优化配置。本文在运输费单价恒定,各产地发量一定, 各客户的需求量也一定的条件下,努力解决多个特定目标实现问题。 力求最优的

2、运输方案。 在确定问题为不平衡的运输问题时,先虚设一个产地,将问题装华为平衡运输问题,将问题转化为目标规划问题,按照目标规划问题的建模思想逐步建立模型。本文的主要特点在于, 将不平衡的线性规划问题合理地转化为目标规划问题,在求解时充分利用 LINGO 软件求解。关键词 : lingo 目标规划线性规划运输优化问题运费最少一问题重述名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 12 页 - - - - - - - - - 2 运输功能是整个现代物流七大基本功能之一,占有很

3、重要的地位, 运输成本在整个物流系统中所占的比重也很大,运输成本的有效控制对物流总成本的节约具有举足轻重的作用。 通过物流流程的改善能降低物流成本,能给企业带来难以预料的效益, 影响运输成本的因素是多样化、综合性的, 这就要求对运输成本的分析要采用系统的观点, 进行综合分析。 由于影响物流运输成本的因素很多,控制措施既涉及运输环节本身, 也涉及供应链的整个物流流程。 要想降低物流运输成本,就必须运用系统的观点和方法,进行综合分析,发现问题,解决问题,使物流运输活动更加优化、物流运输成本更加合理化。本文已知把一种产品从产地一、二运到客户1、2、3 处, 产地的发量、客户的收量及各产地到各客户的运

4、输单价已知。本文要解决问题是: 客户 1 为重要部门,必须全部满足需求量;满足客户2、3 至少 75% 的的需求量;使总运费尽量少;从产地 2 到客户 1 的运量至少有 1000 个单位。二问题分析根据题目中所给出的条件知: 有现成的两个产地和需要产品的三个客户。且两个产地的产量不同, 运送到各个客户的运费单价不同。三个客户所需的货物量不同。而三个客户对两个产地的总需求为2000+1500+5000=8500 (单位) ,而两个产地总的发量为 3000+4000=7000 (单位) , 故需求量大于发量,属于需求量和发量不平衡问题。 且提出四个不同的目标。 故使用目标规划实现建模。 首先设置目

5、标约束的优先级,建立目标约束按目标的优先级,写出相应的目标规划模型。再接着使用 LINGO 软件实现模型的求解,并作出相应结果的分析。三模型假设(1) 产品的运输过程不存在任何的导致产品发量和产品收量不相符的问题。产品安全送到客户处。即有:产品的发量就等于产品的收量。(2) 产品的运输单价始终恒定, 不存在中途因为某种原因而导致产品的单价变化问题。即运费只取决于所运输的产品的数量。(3) 产地的生产量(即发量)有极限值,不可能超出本产地正常的生产范围。(4) 客户需求量在一定的范围内或或是特定的具体值。四符号说明基于题目及所要建立的模型所要用到的变量及参数,作如下符号说明:(1)产地用iA(2

6、,1i其中)表示,表示第产地i ;)2, 1(iai表示其发量;(2)客户用jB(其中 j=1,2,3 ) 表示,表示客户 j;)3,2,1( jbj表示其需求量;(3)用ijc1,2,3j2;,1i其中表示产地iA(2, 1i其中) 往客户jB(其中 j=1,2,3 )处运输产品的单位费用;(4)用 z 表示总的运输费用;(5)用ijx1,2,3j2;,1i其中表示产地iA(2,1i其中)运往客户jB (其名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 12 页 - -

7、 - - - - - - - 3 中 j=1,2,3 )处的物品数量;五模型建立由发量和需求量可知, 发量小于需求量, 故我们需要添加一个虚拟产地(产地3) ,使各产地的总产量之和等于各客户的需求量之和。使问题为平衡的运输问题。且令虚拟产地到各客户的运费单价都为0,如表 1所示:客户1 客户2 客户3 发量产地1 10 4 12 3000 产地2 8 10 3 4000 产地3 0 0 0 1500 需求量2000 1500 5000 表 1 至此,基于问题的分析与假设, 将问题转化为目标规划问题。故分以下步骤进行模型的建立。5.1 设置目标约束的优先级 P1:客户 1 为重要部门,需求量必须

8、全部满足;P2:满足其他两个客户至少75% 的需要量;P3:使运费尽量少;P4:从产地 2 到客户 1的运量至少有 1000个单位。5.2 建立目标约束:1d达不到客户 1 的需求量:1d超过客户 1 的需求量:2d达不到客户 2 的需求量:2d超过客户 2 的需求量3d :超过客户 3 的需求量的需求量达不到客户 3:3d4d :达不到 33000 的运输费用:4d超过 33000的运输费用:5d产地二达不到客户1 的需求量:5d超过客户 1 的需求量5.3 求最少费用 LINGO程序: model: 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - -

9、- - - - - - 名师精心整理 - - - - - - - 第 4 页,共 12 页 - - - - - - - - - 4 sets : supply/1,2,3/:a; demand/1,2,3/:b; link(supply,demand):c,x; endsets min=sum (link(i,j): c(i,j)*x(i,j);); for(demand(j): sum (supply(i): x(i,j)=b(j);); for(supply(i): sum (demand(j): x(i,j)=a(i);); data: a=3000,4000,1500; b=2000,

10、1500,5000; c=10,4,12 8,10,3 0,0,0; enddata End LINGO 求解结果:Global optimal solution found. Objective value: 33000.00 Infeasibilities: 0.000000 Total solver iterations: 6 Variable Value Reduced Cost A( 1) 3000.000 0.000000 A( 2) 4000.000 0.000000 A( 3) 1500.000 0.000000 B( 1) 2000.000 0.000000 B( 2) 15

11、00.000 0.000000 B( 3) 5000.000 0.000000 C( 1, 1) 10.00000 0.000000 C( 1, 2) 4.000000 0.000000 C( 1, 3) 12.00000 0.000000 C( 2, 1) 8.000000 0.000000 C( 2, 2) 10.00000 0.000000 C( 2, 3) 3.000000 0.000000 C( 3, 1) 0.000000 0.000000 C( 3, 2) 0.000000 0.000000 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - -

12、 - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 12 页 - - - - - - - - - 5 C( 3, 3) 0.000000 0.000000 X( 1, 1) 1500.000 0.000000 X( 1, 2) 1500.000 0.000000 X( 1, 3) 0.000000 2.000000 X( 2, 1) 0.000000 5.000000 X( 2, 2) 0.000000 13.00000 X( 2, 3) 4000.000 0.000000 X( 3, 1) 500.0000 0.000000 X( 3, 2) 0.000000

13、 6.000000 X( 3, 3) 1000.000 0.000000 Row Slack or Surplus Dual Price 1 33000.00 -1.000000 2 0.000000 -10.00000 3 0.000000 -4.000000 4 0.000000 -10.00000 5 0.000000 0.000000 6 0.000000 7.000000 7 0.000000 10.00000 我们在将数据整理在一个表格中,如表2所示:客户1 客户2 客户3 发量产地1 1500 1500 0 3000 产地2 0 0 4000 4000 产地3 500 0 100

14、0 1500 需求量2000 1500 5000 表2 由上表可看出, 最少的运输费用为 33000,但第一个目标就不满足, 用户1的需求的不到满足。5.4 按目标的优先级,写出相应的目标规划模型客户 1 为重要部门,需求量必须全部满足;则目标可表示为:2000min11221111ddxxdd满足其他两个客户至少75% 的需要量;则目标可表示为:2222212min75.0*1500dddxx75.0*5000min3323123ddxxd从产地 2 到客户 1 的运量至少有 1000 个单位;则目标可表示为:名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - -

15、- - - - - - - - 名师精心整理 - - - - - - - 第 6 页,共 12 页 - - - - - - - - - 6 1000min55215ddxd由最少费用,可建立目标约束为:213144433000minijijijddxcd故模型建立为:min z=544332211)(dpdpddpdp40003000232221131211xxxxxx%75*5000%75*1500222313112212ddxxddxx3000*313321jijijiddxc10004421ddx六模型求解使用 LINDO软件将模型求解如下: LINGO 程序: model : sets

16、 : Level/1,2,3,4/:P,z,Goal; s_Con_Nun/1,2,3,4,5/:dplus,dminus; supply/1,2/:a; customer/1,2,3/:b; Routes(supply,customer):c,x; endsetsdata : p=?,?,?,?; Goal=?,?,?,0; a=3000,4000; b=2000,1500,5000; c=14,4,12 8,10,3; enddatamin=sum (Level:P*z); 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名

17、师精心整理 - - - - - - - 第 7 页,共 12 页 - - - - - - - - - 7 z(1)=dminus(1) z(2)= dminus(2)+dminus(3); z(3)=dplus(4); z(4)=dminus(5); for(supply(i): sum (customer(j):x(i,j)=a(i);); x(1,1)+x(2,1)+dminus(1)-dplus(1)=2000; for(customer(j): sum (supply(i):x(i,2)+dminus(2)-dplus(2)=1500*0.75; sum (supply(i):x(i,

18、3)+dminus(3)-dplus(3)=1500*0.75; sum (Routes:c*x)+dminus(4)-dplus(4)=33000; x(2,1)+dminus(5)-dplus(5)=1000; for(Level(i)|i#lt#size(Level): bnd (0,z(i),Goal(i);); End LINGO 求解结果:No feasible solution found. Infeasibilities: 1500.000 Total solver iterations: 5 Variable Value Reduced Cost P( 1) 0.100000

19、0+308 0.000000 P( 2) 0.1000000+308 0.000000 P( 3) 0.1000000+308 0.000000 P( 4) 0.1000000+308 0.000000 Z( 1) 0.000000 0.000000 Z( 2) 0.000000 0.000000 Z( 3) 13000.00 0.000000 Z( 4) 500.0000 0.000000 GOAL( 1) 0.1000000+308 0.000000 GOAL( 2) 0.1000000+308 0.000000 GOAL( 3) 0.1000000+308 0.000000 GOAL(

20、4) 0.000000 0.000000 DPLUS( 1) 0.000000 0.000000 DPLUS( 2) 375.0000 0.000000 DPLUS( 3) 3875.000 0.000000 DPLUS( 4) 13000.00 0.000000 DPLUS( 5) 0.000000 0.1000000+308 DMINUS( 1) 0.000000 0.1000000+308 DMINUS( 2) 0.000000 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第

21、8 页,共 12 页 - - - - - - - - - 8 0.1000000+308 DMINUS( 3) 0.000000 0.1000000+308 DMINUS( 4) 0.000000 0.1000000+308 DMINUS( 5) 500.0000 0.000000 A( 1) 3000.000 0.000000 A( 2) 4000.000 0.000000 B( 1) 2000.000 0.000000 B( 2) 1500.000 0.000000 B( 3) 5000.000 0.000000 C( 1, 1) 14.00000 0.000000 C( 1, 2) 4.

22、000000 0.000000 C( 1, 3) 12.00000 0.000000 C( 2, 1) 8.000000 0.000000 C( 2, 2) 10.00000 0.000000 C( 2, 3) 3.000000 0.000000 X( 1, 1) 1500.000 0.000000 X( 1, 2) 1500.000 0.000000 X( 1, 3) 0.000000 0.2000000+308 X( 2, 1) 500.0000 -0.1146654+297 X( 2, 2) 0.000000 0.1300000+309 X( 2, 3) 5000.000 0.00000

23、0 Row Slack or Surplus Dual Price 1 3000.000 -1.000000 2 0.000000 -0.1000000+308 3 0.000000 -0.1000000+308 4 0.000000 -0.1000000+308 5 0.000000 -0.1000000+308 6 0.000000 Infinity 7 -1500.000 Infinity 8 0.000000 -Infinity 9 0.000000 -Infinity 10 0.000000 -Infinity 11 0.000000 0.000000 12 0.000000 0.0

24、00000 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 9 页,共 12 页 - - - - - - - - - 9 13 0.000000 0.000000 14 0.000000 0.000000 15 0.000000 0.000000 16 0.000000 0.000000 17 0.000000 0.000000 18 0.000000 0.000000 19 0.000000 -0.1000000+308 20 0.000000 0.000000 21 0.0000

25、00 0.000000 22 0.000000 0.1000000+308 23 0.000000 0.000000 即:150011x,150012x,013x,50021x,022x,500023x。七模型分析产地1A运往客户1B的货物量为 1500 个单位;产地1A运往客户2B的货物量为 1500 个单位;产地1A不往客户3B 运输货物;产地2A运往客户1B的货物量为500 个单位;产地2A不往客户2B运输货物。另一方面,由于收到生产能力的限制产地2A运往客户3B 的货物量只能为 4000 个单位。即:150011x,150012x,013x,50021x,022x,400023x。此时

26、,最大限度地接近目标,使得最费用最小,为 33000。八模型评价优点:1将线性规划与目标规划联系,能体现二者的异同;2 采用的数学模型有成熟的理论基础,可信度高;3 建立的数学模型都有相应的专用软件支持,算法简便,编程实现简单;4 所得数据合理,可靠性很高, ;5 本文建立的模型能与实际紧密联系, 结合实际情况对所提出的问题进行模拟,名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 10 页,共 12 页 - - - - - - - - - 10 使模型更贴近实际,通用性、推广型更强。

27、缺点:所建的模型只考虑具体运输的运输方案,而忽略了单价等对运输的影响, 具有一定的局限性参考文献 : 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 11 页,共 12 页 - - - - - - - - - 11 1 张干宗,线性规划 M ,北京:武汉大学出版社,2004。2 朱洪文,宋立,王维国,应用统计M ,北京 : 高等教育出版社, 2004。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 12 页,共 12 页 - - - - - - - - -

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 技术总结

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁