八年级数学整式的乘法教案.doc

举报
资源描述
-! 第十五章 整式的乘法 15.1.1 同底数幂的乘法 教学目的: 1、能归纳同底数幂的乘法法则,并正确理解其意义; 2、会运用同底数幂的乘法公式进行计算,对公式中字母所表示“数”的各种可能情形应有充分的认识,并能与加减运算加以区分;了解公式的逆向运用; 教学重点:同底数幂的乘法法则 难点:底数的不同情形,尤其是底数为多项式时的变号过程 教具与实验:用于拼图的长方形硬纸板 一、创设情境,激发求知欲 课本第140页的引例 二、复习提问 1.乘方的意义:求n个相同因数a的积的运算叫乘方 2.指出下列各式的底数与指数: (1)34;(2)a3;(3)(a+b)2;(4)(-2)3;(5)-23. 其中,(-2)3与-23的含义是否相同?结果是否相等?(-2)4与-24呢? 三、讲授新课 1.(课本141页 问题) 利用乘方概念计算:1014103. 2、 计算观察,探索规律:完成课本第141页的“探索”,学生“概括”aman=…=am+n; 3、 观察上式,找出其中包含的特征:左边的底数相同,进行乘法运算; 右边的底数与左边相同,指数相加 4、 归纳法则:同底数的幂相乘,底数不变,指数相加。 三、实践应用,巩固创新 例1、计算: (1)x2 x5 (2)aa6 (3) 22423 (4) xm x3m + 1 练习: 1. 课本第142页:(学生板演过程,写出中间步骤以体现应用法则) 2.随堂巩固:下面计算否正确?若不正确请加以纠正。 ①a6a6=2a6②a2+a4=a6 ③ a2a4 =a8 例2、计算: 要点指导: 底数中负号的处理;能化为同底数幂的数字底数的处理;多项式底数及符号的处理。 例3、(1)填空:⑴若xm+nxm-n=x9;则m= ; ⑵2m=16,2n=8,则2m+n = 。 四、归纳小结,布置作业 小结:1、同底数幂相乘的法则; 2、法则适用于三个以上的同底数幂相乘的情形; 3、相同的底数可以是单项式,也可以是多项式; 4、要注意与加减运算的区别。 15.1.2 幂的乘方 教学目标: (1)经历探索幂的乘方的运算性质的过程,进一步体会幂的意义; (2)了解幂的乘方的运算性质,并能解决一些实际问题. 教学重点:幂的乘方的运算性质及其应用. 教学难点:幂的运算性质的灵活运用. 一:知识回顾 1.讲评作业中出现的错误 2.同底数幂的乘法的应用的练习 二:新课引入 探究:根据乘方的意义及同底数幂的乘法填空,看看计算的结果有什么规律: (1)(32)3= 32 32 32 = 3 ﹝ ﹞ (2)(a2)3 = a2a2a2 = a ﹝ ﹞ (3)(am)3 = amam am = a﹝ ﹞ (4)(am)n = = = amn. 观察结果,发现幂在进行乘方运算时,可以转化为指数的乘法运算. 引导学生归纳同底数幂的乘法法则: 幂的乘方,底数不变,指数相乘. 即:(am)n=amn(m、n都是正整数). 二、知识应用 例题 :(1)(103)5; (2)(a4)4; (3)(am)2;(4)-(x4)3; 说明:-(x4)3表示(x4)3的相反数 练习:课本第143页 ( 学生黑板演板) 补充例题: (1)(y2)3y (2)2(a2)6-(a3)4 (3)(ab2)3 (4) - ( - 2a 2b)4 说明:(1) (y2)3y中既含有乘方运算,也含有乘法运算,按运算顺序,应先乘方,再做乘法,所以,(y2)3y = y23y = y6+1 = y7; (2) 2(a2)6-(a3)4按运算顺序应先算乘方,最后再化简.所以,2(a2)6-(a3)4=2a26-a34=2a12-a12=a12. 三 幂的乘方法则的逆用 . (1)x13x7=x( )=( )5=( )4=( )10; (2)a2m =( )2 =( )m (m为正整数). 练习: 1.已知39n=37,求n的值. 2.已知a3n=5,b2n=3,求a6nb4n的值. 3.设n为正整数,且x2n=2,求9(x3n)2的值. 四、归纳小结、布置作业 小结:幂的乘方法则. 15.1.3 积的乘方 教学目标: (1)经历探索积的乘方的运算性质的过程,进一步体会幂的意义; (2)了解积的乘方的运算性质,并能解决一些实际问题. 教学重点:积的乘方的运算性质及其应用. 教学难点:积的乘方运算性质的灵活运用. 教学过程: 一. 创设情境,复习导入 1 .前面我们学习了同底数幂的乘法、幂的乘方这两个运算性质,请同学们通过完成一组练习,来回顾一下这两个性质: (1)  (2) (3)  (4) 2.探索新知,讲授新课 (1)(35)7 ——积的乘方 = ——幂的意义 = ——乘法交换律、结合律 =3757; ——乘方的意义 (2) (ab)2 = (ab) (ab) = (aa) (b b) = a( ) b( ) (3) (a2b3)3 = (a2b3) ( a2b3) ( a2b3) = (a2 a2 a2 ) (b3b3b3) = a( ) b( ) (4) (ab)n = ——幂的意义 = ——乘法交换律、结合律 =anbn . ——乘方的意义 由上面三个式子可以发现积的乘方的运算性质: 积的乘方,等于把每一个因式分别乘方,再把所得的幂相乘. 即:(ab)n=anbn 二、知识应用,巩固提高 例题3 计算 (1)(2a )3; (2)(-5b)3; (3)( xy2 )2; (4)(- 2/3x3)4. (5)(-2xy)4 (6)(2103 )2 说明: (5)意在将(ab)n=anbn推广,得到了(abc)n=anbncn 判断对错:下面的计算对不对?如果不对,应怎样改正?   ①   ②   ③ 练习:课本第144页  三.综合尝试,巩固知识   补充例题: 计算:   (1)   (2) 四.逆用公式:,即 预备题:(1)   (2) 例题:(1)0.12516(-8) 17;(2) (2)已知2m=3,2n=5,求23m+2n的值. (注解):23m+2n=23m22n=(2m)3(2n)2=3352=2725=675. 四、归纳小结、布置作业 作业:习题 15.1 15.1.4 整式的乘法 (单项式乘以单项式) 教学目标:经历探索单项式与单项式相乘的运算法则的过程,会进行整式相乘的运算。 教学重点:单项式与单项式相乘的运算法则的探索. 教学难点:灵活运用法则进行计算和化简. 教学过程: 一. 复习巩固: 同底数幂,幂的乘方,积的乘方三个法则的区分。 二. 提出问题,引入新课 (课本引例):光的速度约为3105千米/秒,太阳光照射到地球上需要的时间大约是5102秒,你知道地球与太阳的距离约是多少千米吗? (1)怎样计算(3105)(5102)?计算过程中用到哪些运算律及运算性质? (2)如果将上式中的数字改为字母,比如ac5•bc2怎样计算这个式子? 说明:(3105) (5102),它们相乘是单项式与单项式相乘. ac5•bc2是两个单项式ac5与bc2相乘,我们可以利用乘法交换律,结合律及同底数幂的运算性质来计算:ac5•bc2=(a•b)•(c5•c2)=abc5+2=abc7. 三. 单项式乘以单项式的运算法则及应用 单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. 例4 (课本例题) 计算:(学生黑板演板) (1)(-5a2b)(-3a); (2)(2x)3(-5xy2). 练习1(课本)计算: (1)3x25x3; (2)4y(-2xy2); (3)(3x2y)3•(-4x); (4)(-2a)3(-3a)2. 练习2(课本)下面计算的对不对?如果不对,应当怎样改正? (1)3a3•2a2 = 6a6; (2)2x2 • 3x2 = 6x4 ; (3)3x2 • 4x2 = 12x2; (4)5y3 • y5 = 15y15. 四.巩固提高 (补充例题): 1.(-2x2y)(1/3xy2) 2.(-3/2ab)(-2a)(-2/3a2b2) 3.(2105)2(4103) 4.(-4xy)(-x2y2)(1/2y3) 5.(-1/2ab2c)2(-1/3ab3c2)3(12a3b) 6.(-ab3)(-a2b)3 7.(-2xn+1yn)(-3xy)(-1/2x2z) 8.-6m2n(x-y)31/3mn2(y-x)2 五.小结作业 方法归纳: (1) 积的系数等于各系数的积,应先确定符号。 (2) 相同字母相乘,是同底数幂的乘法。 (3) 只在一个单项式里含有的字母,要连同它的指数写在积里,注意不要把这个因式丢掉。 (4) 单项式乘法法则对于三个以上的单项式相乘同样适用。 (5) 单项式乘单项式的结果仍然是单项式。 作业:课本149页 3 15.1.4 整式的乘法 (单项式乘以多项式) 教学目标:经历探索单项式与多项式相乘的运算法则的过程,会进行整式相乘的运算。 教学重点:单项式与多项式相乘的运算法则的探索. 教学难点:灵活运用法则进行计算和化简. 教学过程: 一. 复习旧知 1. 单项式乘单项式的运算法则 2. 练习:9x2y3(-2xy2) (-3ab)3(1/3abz) 3. 合并同类项的知识 二、问题引入,探究单项式与多项式相乘的法则 (课本内容):三家连锁店以相同的价格m(单位:元/瓶)销售某种商品,它们在一个月内的销售量(单位:瓶)分别是a、b、c.你能用不同的方法计算它们在这个月内销售这种商品的总收入吗? 学生独立思考,然后讨论交流.经过思考可以发现一种方法是先求出三家连锁店的总销量,再求总收入,为:m(a+b+c). 另一种计算方法是先分别求出三家连锁店的收入,再求它们的和,即:ma+mb+mc. 由于上述两种计算结果表示的是同一个量,因此 m(a+b+c)=ma+mb+mc. 学生归纳:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加. 引导学生体会:单项式与多项式相乘,就是利用乘法分配律转化为单项式与单项式相乘, 三.讲解例题 1. 例题5(课本) 计算: (1)(-4x2)(3x+1); (2) 2 .补充例题1: 化简求值: (-3x)2 - 2x ( x+3 ) + xx +2x (- 4x + 3)+ 2007 其中:x = 2008 练习:课本146页 1、2 3.补充练习: 计算 1.2ab(5ab2+3a2b); 2.(ab2-2ab) ab; 3.-6x(x-3y); 4.-2a2(ab+b2). 5.(-2a2)(1/2ab + b2) 6. (2/3 x2y - 6x y)1/2xy2 7. (-3 x2)(4x 2- 4/9x + 1) 8 3ab( 6 a2b4 -3ab + 3/2ab3 ) 9. 1/3xny (3/4x2-1/2xy-2/3y-1/2x2y) 10. ( - ab)2 ( -3ab)2(2/3a2b + a3a2a -1/3a ) 四.小结归纳,布置作业: 作业:课本第149页 4 15.1.4 整式的乘法(多项式乘以多项式) 教学目标:经历探索多项式与多项式相乘的运算法则的过程,会进行整式相乘的运算. 教学重点:多项式与多项式相乘的运算法则的探索 教学难点:灵活运用法则进行计算和化简. 教学过程: m n a b bn bm am an 一.复习旧知 讲评作业 二.创设情景,引入新课 (课本)如图,为了扩大街心花园的绿地面积,把一块原长a米、宽m米的长方形绿地,增长了b米,加宽了n米.你能用几种方法求出扩大后的绿地面积? 一种计算方法是先分别求出四个长方形的面积,再求它们的和,即(am+an+bm+bn)米2. 另一种计算方法是先计算大长方形的长和宽,然后利用长乘以宽得出大长方形的面积,即(a +b)(m+n)米2. 由于上述两种计算结果表示的是同一个量,因此 (a +b)(m+n)= am+an+bm+bn. 教师根据学生讨论情况适当提醒和启发,然后对讨论结果(a +b)(m+n)=am+an+bm+bn进行分析,可以把m+n看做一个整体,运用单项式与多项式相乘的法则,得 (a +b)(m+n)=a(m+n)+b(m+n), 再利用单项式与多项式相乘的法则,得 a(m+n)+b(m+n)= am+an+bm+bn. 学生归纳:多项式与多项式相乘,就是先用一个多项式中的每一项去乘另一个多项式的每一项,再把所得的积相加. 三、应用提高、拓展创新 例6(课本):计算 (1)(3x+1)(x+2) ; (2) (x -8y)(x-y) ; (3) (x+y)(x2-xy+y2) 进行运算时应注意:不漏不重,符号问题,合并同类项 练习:(课本)148页 1 2 补充例题: 1. (a+b)(a-b)-(a+2b)(a-b) 2. (3x4-3x2+1)(x4+x2-2) 3. (x-1)(x+1)(x2+1) 4. 当a=-1/2时,求代数式 (2a-b)(2a+b)+(2a-b)(b-4a)+2b(b-3a)的值 四.归纳总结,布置作业 课本 149页 5 15.2.1 平方差公式 教学目标:经历探索平方差公式的过程,会推导平方差公式,并能运用公式进行简单的运算. 教学重点:平方差公式的推导和应用. 教学难点:灵活运用平方差公式解决实际问题. 过程: 一. 创设问题情境,激发学生兴趣,引出本节内容 活动1 知识复习 多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加. (a+b)(m+n)=am+an+bm+bn 活动2 计算下列各题,你能发现什么规律? (1)(x+1)(x-1); (2)(a+2)(a-2); (3)(3-x)(3+x); (4)(2m+n)(2m-n). 再计算:(a+b)(a-b)=a2-ab+ab-b2=a2-b2. 得出平方差公式 (a+b)(a-b)= a2-b2.即两数和与这两数差的积等于这两个数的平方差. 活动3 请用剪刀从边长为a的正方形纸板上,剪下一个边长为b的小正方形(如图1),然后拼成如图2的长方形,你能根据图中的面积说明平方差公式吗? 图1 图2 图1中剪去一个边长为b的小正方形,余下图形的面积,即阴影部分的面积为 (a2-b2). 在图2中,长方形的长和宽分别为(a+b)、(a-b),所以面积为 (a+b)(a-b). 这两部分面积应该是相等的,即(a+b)(a-b)= a2-b2. 二、知识应用,巩固提高 例1 计算: (1)(3x+2)(3 x-2); (2)(-x+2y)(-x-2y) (3)(b+2a)(2a-b); (4)(3+2a) (-3+2a) 练习:加深对平方差公式的理解 (课本 153页练习1有同种题型) 下列多项式乘法中,能用平方差公式计算的是( ) (1)(x+1)(1+x); (2)(a+b)(b-a); (3)(-a+b)(a-b); (4)(x2-y)(x+y2); (5)(-a-b)(a-b); (6)(c2-d2)(d 2+c2). 例题2:计算 (1)10298 (2)(y+2)(y-2)-(y-1)(y+5) (3)(a+b+c)(a-b+c)(补充) (4) 20042-20032(补充) (5) (a + 3 )(a - 3)( a2 + 9 ) (补充) 说明:(3)意在说明公式中的a,b可以是单项式,也可以是多项式 (4) 意在说明公式的逆用 练习:课本153页 2 四、归纳小结、布置作业 课本习题 156 页 习题 1 ; 5 15.2.2 完全平方公式 (第1课时) 教学目标:完全平方公式的推导及其应用;完全平方公式的几何背景;体会公式中字母的广泛含义,它可以是数,也可以是整式. 教学重点:(1)完全平方公式的推导过程、结构特点、语言表述、几何解释; (2)完全平方公式的应用. 教学难点:完全平方公式的推导及其几何解释和公式结构特点及其应用. 教学过程: 一、 激发学生兴趣,引出本节内容 活动1 探究,计算下列各式,你能发现什么规律? (1)(p+1)2 =(p+1)(p+1)=_________; (2)(m+2)2=(m+2)(m+2)=_________; (3)(p-1)2 =(p-1)(p-1)=_________; (4)(m-2)2=(m-2)(m-2)=_________. 答案:(1)p2+2p+1; (2)m2+4m+4; (3)p2-2p+1; (4)m2-4m+4. 活动2 在上述活动中我们发现(a+b)2=,是否对任意的a、b,上述式子都成立呢? 学生利用多项式与多项式相乘的法则进行计算,观察计算结果,寻找一般性的结论,并进行归纳,用多项式乘法法则可得 (a+b)2=(a+b)(a+b)= a(a+b)+b(a+b)=a2+ab+ab+b2 =a2+2ab+b2. (a-b)2=(a-b)(a-b)=a(a-b)-b(a-b)=a2-ab-ab+b2 =a2-2ab+b2. 二、问题引申,总结归纳完全平方公式 两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍,即 (a + b)2=a2+2ab+b2, (a-b)2=a2-2ab+b2. 在交流中让学生归纳完全平方公式的特征: (1)左边为两个数的和或差的平方; (2)右边为两个数的平方和再加或减这两个数的积的2倍. 活动4 你能根据教材中的图15.2-2和图15.2-3中的面积说明完全平方公式吗? 三.例题讲解,巩固新知 例3:(课本)运用完全平方公式计算 (1) (4m+ n)2 ; (2) (y-1/2)2 补充例题:运用完全平方公式计算 (1)(-x+2y)2; (2)(-x-y)2; (3) ( x + y )2-(x-y)2. 说明:(1)题可转化为(2y-x)2或(x-2y)2,再运用完全平方公式; (2)题可以转化为(x+y)2,利用和的完全平方公式; (3)题可利用完全平方公式,再合并同类项,也可逆用平方差公式进行计算. 例 4:(课本) 运用完全平方公式计算 (1)1022; (2)992. 思考:(a+b)2与(-a-b)2相等吗?为什么? (a-b)2与(b-a)2相等吗?为什么? (a-b)2与a2-b2相等吗?为什么? 练习:课本155页 1 ;2 补充例题: (1) 如果x 2 + kxy + 9y2是一个完全平方式,求k的值 (2) 已知x+y=8,xy=12,求x2 + y2 ; (x - y )2的值 (3) 已知 a + 1/a = 3 ,求 a2 + 1/a2 四、归纳小结、布置作业 小结:完全平方公式. 作业:课本156 页 习题 2 ; 6; 7 15.2.2 完全平方公式(第2课时) 教学目标:熟练掌握完全平方公式及其应用,理解公式中添括号的方法 重点:添括号法则及完全平方公式的灵活应用 难点:添括号法则及完全平方公式的灵活应用 内容: 一 复习旧知,引入添括号法则 去括号法则:a +(b+c) = a+b+c a -(b+c) = a - b - c 添括号法则:a+b+c = a +(b+c) a - b - c = a -(b+c) 添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号。 练习:(课本156页 练习 1 有同种类型题) a + b -c = a +(b - c ) = a - (- b + c ) a - b + c = a + ( - b + c ) = a - ( b - c ) 二 讲解例题,巩固新知 例题5 运用乘法公式计算:(课本) (1)( x + 2y - 3 ) ( x -2y + 3) (2)(a + b +c )2. 练习 : 课本 156页 练习 2 三 补充例题,开阔眼界 1 利用乘法公式化简求值题 (2x + y )2 - ( x + y )(x – y) ,其中x = 1 ,y = - 2 2 乘法公式在解方程和不等式中的应用 ①已知(a +b )2 = 7 ,( a - b )2 = 4 求 a 2+ b 2 和 ab的值 ②解不等式: ( 2x -5 ) (- 5 -2x) + (x + 5 )2﹥ 3x (- x + 2 ) 3 与三角形知识相结合的应用 已知三角形ABC的三边长a 、b、c ,满足a2 + b2 + c2- ab – bc - ac = 0,试判断三角形的形状。 四 总结归纳,布置作业 添括号法则 作业: 课本 157页 3 ;4;5;8;9;(根据学生情况酌定) 15. 3. 1 同底数幂的除法 教学目标: 1、经历探索同底数幂的除法的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。 2、了解同底数幂的除法的运算性质,并能解一些实际问题。 教学重点:公式的实际应用。 教学难点:a0=1中a≠0的规定。 教学过程: 一、 探索同底数幂的除法法则 1、根据除法的意义填空,并探索其规律 (1)5 55 3=5( ) (2)107105=10( ) (3)a6a3=a( ) 推导公式:a m a n = a m - n(a≠0,m、n为正整数,且m>n) 归纳:同底数幂相除,底数不变,指数相减。 2、比较公式 a man=am + n (am)n= am n (ab)m = a m bm am an =am - n 比较其异同,强调其适用条件 二、 实际应用 例1:计算 (1)x8x2 (2)a4a (3)(ab)5(ab)2 例2:一种数码照片的文件大小是28 K,一个存储量为26 M(1M=210K)的移动存储器能存储多少张这样的数码照片? 解:26 M=26210 K=216 K 21628=28(张)=256(张) 三、 探究a0的意义 根据除法的意义填空,你能得什么结论? (1)3232= (2)103103= (3)amam= (a≠0) 由除法意义得:aman=1 (a≠0) 如果依照amam=am - m=a0 于是规定:a0=1 (a≠0) 即任何不等于0的数的0次幂都等于1 四、练习:P160 1、2、3 五、作业:P164 习题15.3 1、4、5、7 15. 3. 2 整式的除法(1) 教学目标:经历探索单项式除以单项式法则的过程,会进行单项式除以单项式的运算。 教学重点:运用法则计算单项式除法 教学难点:法则的探索 教学过程: 一、提出问题,引入新课] 问题:木星的质量约是1.901024吨,地球的质量约是5.981021吨,你知道木星的质量约为地球质量的多少倍吗? 如何计算:(1.901024)(5.981021),并说明依据。 二、讨论问题,得出法则 讨论如何计算: (1)8a32a (2)6x3y3xy (3)12a3b3x33ab2 [注:8a32a就是(8a3)(2a)] 由学生完成上面练习,并得出单项式除单项式法则。 单项式除以单项式法则: 单项式相除,把系数与同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。 三、法则的应用 例1:计算 (1)28x4y27x3y (2)-5a5b3c15a4b 练习:P162 1、2 例2:计算下列各题 (1)(a+b)4(a+b)2 (2)[(x-y)3]3[(y-x)2]4 (3)(-6x2y)3(-3xy)3 例3:当x=-2,y=1/4时,求代数式: (-4x2)(-4x)2+12x3y2(-4x2y)-24x4y3(-4x3y2)的值 例4:已知 5m=3 25m=11,求 5 3m - 2n的值。 四、归纳小结,布置作业 本节所学法则可与前面所学的三个法则比较,理解并记忆。 五、学校作业:P164 2、4、5、6 补充作业: 1、月球距离地球大约3.84105km,一架飞机的速度约为 8102km/h,如果坐此飞机飞行这么远的距离,大约需要多长时间? 2、观察下面一列式子,根据你所看到的规律进行填空: a,-2a2,4a2,-8a2,……,第10项为 ,第n项为 。 3、已知am=4,an=3,ak=2 则am - 3k + 2n= 4、16m4n2等于( ) (A)2m-n-1 (B)22m-n-2 (C)23m-2n-1 (D)24m-2n-1 15. 3. 3 整式的除法(2) 教学目标:经历探索多项式除以单项式法则的过程,会进行多项式除以单项式的运算。 教学重点:运用法则计算多项式除以单项式。 教学难点: (1)法则的探索; (2)法则的逆应用; 教学过程: 一、复习旧知: 计算: (1)amm+bmm (2)a2a+aba (3)4x2y2xy+2xy22xy 二、探索多项式除以单项式法则 计算:(am+bm)m,并说明计算的依据 ∵(a+b)m = am+bm ∴(am+bm)m=a+b 又amm+bmm=a+b 故(am+bm)m=amm+bmm 用语言描述上式,得到多项式除以单项式法则: 多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。 根据法则:(a2+ab)a= + 三、实践应用 例1:计算 (1)(4x2y+2xy2)2xy (2)(12a3-6a2+3a)3a (3)(21x4y3-35x3y2+7x2y2)(-7x2y) (4)[(x+y)2-y(2x+y)-8x]2x 练习:P163 (1)(2)(3)(4) 例2:计算 (1)(2/5a3x4-0.9ax3)3/5ax3 (2)(2/5x3y2-7xy2+2/3y3)2/3y2 例3:化简求值 (1)(x5+3x3)x3-(x+1)2 其中x=-1/2 (2)[(x+y)(x-y)-(x-y)2+2y(x-y)]4y 其中x=2,y=1 四、归纳小结,布置作业 P164 3 8 思考题: (1) (-4x2)=-3x2+4x-2 (2)长方形的面积为4a2-6ab+2a,若它的一个边长为2a,则它的周长是 。 (3)已知3n+11m能被10整除,求证:3n+4+11m+2能被10整除。 15. 4.1 提公因式法 教学目标: 1、理解因式分解的概念。 2、会确定多多项式的公因式。 3、会用提公因式法分解因式。 教学重点:用提公因式法分解因式 教学难点:公因式的确定 教学过程: 一、分解因式(因式分解)的概念 计算: (1)x(x+1) (2)(x+1)(x-1) (学生练习,并演板) x(x+1)=x2+x (x+1)(x-1)=x2-1 上面二式都是整式乘法,即把整式的乘积化为多项式的形式。 反过来:x2+x=x(x+1) x2-1=(x+1)(x-1) 即把多项式化为整式积的形式。 因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做这个多项式因式分解(或分解因式)。 因式分解与整式乘法是相反方向的变形,即它们互为逆运算。 判断下列各式由左边到右边的变形中,哪些是因式分解: (1)6=23 (2)a(b+c)=ab+ac (3)a2-2a+1=a(a-2)+1 (4)a2-2a=a(a-2) (5)a+1=a(1+1/a) 二、提公因式法 1、公因式 多项式ma+mb+mc中,各项都有一个公共的因式m,称为该多项式的公因式。 一般地,一个多项式各项都有的公共的因式称为这个多项式的公因式。 指出下列各多项式的公因式 (1)8a3b2+12ab3c (2)8m2n+2mn (3)-6abc+3ab2-9a2b 通过以上各题,你对确定多项式的公因式有什么方法?(学生归纳、总结) 2、提公因式法 由m(a+b+c)=ma+mb+mc,得到ma+mb+mc+=m(a+b+c),其中,一个因式是公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,这种分解因式的方法叫做提公因式法。 三、例1:把(1)2a2b-4ab2 (2)8a3b2+12ab3c分解因式 解:(1)2a2b-4ab2 =2aba-2ab2b =2ab(a-2b) (2)8a3b2+12ab3c =4ab22a2+4ab23bc =4ab2(2a2+3bc) 练习:P167 1(1)(2) 例2:把2a(b+c)-3(b+c)分解因式 练习:P167 1(3)(4) 2 例3:用简便方法计算 (1)9992+999 (2)20072-20062007 练习:P167 3 四、归纳小结,布置作业 (1)分解因式 (2)确定公因式 (3)提公因式方法 P170 习题 15.4 1 6 补充练习: 1、分解因式: (1)m2(a-2)+m(2-a) (2)m-n-mn+1 (3)a2n-an (4)(3a-4b)(7a-8b)+(11a-12b)(8b-7a) 2、计算:210-29-28 3、已知a-b=3,ab=-1,求a2b-ab2 4、若a为实数,则多项式a2(a2-1)-a2+1的值( ) A、不是负数 B、恒为正数 C、恒为负数 D、不等于0 5、证明:817-279-913能被45整除 6、若关于x的二次三项式3x2-mx+n分解因式结果为(3x+2)(x-1),则m= ,n= 。 15. 4.2 公式法(1) 教学目标: (1)进一步理解分解因式的概念。 (2)能熟练运用平方差公式分解因式。 教学重点:把符合公式形式的多项式写成平方差的形式,并分解因式。 教学难点:(1)确定多项式中的a、b;(2)分解彻底; 教学过程: 一、 复习巩固 1、什么叫分解因式? 2、用提公因式法分解因式 (1)2xy-4y (2)-2x(x+1)+(x+1)2 二、用平方差公式分解因式 把公式(a+b)(a-b)=a2-b2反过来就得到 a2-b2=(a+b)(a-b) 该公式用语言叙述为: 两个数的平方差等于这两个数的和与这两个数差的积。 注:(1)使用平方差公式分解因式时,必须先把原多项式写成两“数”平方差的形式,再分解因式,即用公式分解因式时,必须认准其中的“a”与“b”。 (2)公式中的a、b即可以是单项式,也可以是多项式。 三、公式的应用 例1:分解因式 (1)4x2-9 (2)(x+p)2-(x+q)2 解:(1)4x2-9 =(2x)2-32 =(2x+3)(2x-3) (2)(x+p)2-(x+q)2 =[(x+p)+(x+q)][(x+p)-(x+q)] =(2x+p+q)(p-q) 练习P168 1 2 例2:分解因式 (1)x4-y4 (2)a3b-ab 注:分解因式,必须进行到每一个进行因式都不能再分解为止。 练习:分解因式 (1)a3-a (2)-(1+xy)2+(1-xy)2 (3)x2(x-y)+y2(y-x) (4)1-x4 (5)2x2-8 (6)m2(a-2)+m(2-a) (7)m2-n2+2m-2n 四、小结 (1)应用平方差公式分解因式,必须认准的a与b。 (2)分解因式必须彻底。] (3)有公因式的先提公因式,再用公式分解。 五、作业:P171 2 7 15. 4. 3 公式法(2) 教学目标:熟练应用完全平方公式分解因式 教学重点:把多项式写成符合公式的形式,并分解因式。 教学难点:(1)辨认多项式中的“a”与“b”;(2)分解到底。 教学过程: 一、复习平方差公式,并练习下列各题 (1)-a2+b2 (2)(x+2)2-(x-2)2 (3)2a-8a2 二、用完全平方公式分解因式 把整式乘法的完全平方公式: (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 反过来,得到: a2+2ab+b2=(a+b)2 a2-2ab+b2=(
展开阅读全文
相关搜索
温馨提示:
taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。

当前位置:首页 > 教育专区 > 教案示例


本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁