-!
第一讲 和绝对值有关的问题
一、 知识结构框图:
二、 绝对值的意义:
(1)几何意义:一般地,数轴上表示数a的点到原点的距离叫做数a的绝对值,记作|a|。
(2)代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数;
③零的绝对值是零。
说明:(Ⅰ)|a|≥0即|a|是一个非负数;
(Ⅱ)|a|概念中蕴含分类讨论思想。
也可以写成:
三、 典型例题
例1.(数形结合思想)已知a、b、c在数轴上位置如图:
则代数式 | a | + | a+b | + | c-a | - | b-c | 的值等于( )
A.-3a B. 2c-a C.2a-2b D. b
例2.已知:,,且, 那么的值( )
A.是正数 B.是负数 C.是零 D.不能确定符号
例3.(分类讨论思想)已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?
例4.(整体思想)方程 的解的个数是( )
A.1个 B.2个 C.3个 D.无穷多个
例5.(非负性)已知|ab-2|与|a-1|互为相互数,试求下式的值.
例6.(距离问题)观察下列每对数在数轴上的对应点间的距离 4与,3与5,与,与3.
并回答下列各题:
(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答:___ .
(2)若数轴上的点A表示的数为x,点B表示的数为―1,则A与B两点间的距离
可以表示为 ________________.
(3)结合数轴求得的最小值为 ,取得最小值时x的取值范围为 ___.
(4) 满足的的取值范围为 ______ .
第二讲:代数式的化简求值问题
1、 知识链接
1.“代数式”是用运算符号把数字或表示数字的字母连结而成的式子。它包括整式、分式、二次根式等内容.
2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。
注:一般来说,代数式的值随着字母的取值的变化而变化
3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。
二、典型例题
例1.若多项式的值与x无关,
求的值.
例2.x=-2时,代数式的值为8,求当x=2时,代数式的值。
例3.当代数式的值为7时,求代数式的值.
例4. 已知,求的值.
例5.(实际应用)A和B两家公司都准备向社会招聘人才,两家公司招聘条件基本相同,只有工资待遇有如下差异:A公司,年薪一万元,每年加工龄工资200元;B公司,半年薪五千元,每半年加工龄工资50元。从收入的角度考虑,选择哪家公司有利?
例6.三个数a、b、c的积为负数,和为正数,且,
则 的值是_______ 。
1
7
2
8
3
9
4
10
5
11
6
12
例7.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,….
(1)“17”在射线 ____上,
“2008”在射线___________上.
(2)若n为正整数,则射线OA上数字的排列规律可以用含n的
代数式表示为__________________________.
例8. 将正奇数按下表排成5列:
第一列 第二列 第三列 第四列 第五列
第一行 1 3 5 7
第二行 15 13 11 9
第三行 17 19 21 23
第四行 31 29 27 25
根据上面规律,2007应在
A.125行,3列 B. 125行,2列 C. 251行,2列 D. 251行,5列
例9.(2006年嘉兴市)定义一种对正整数n的“F”运算:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为(其中k是使为奇数的正整数),并且运算重复进行.例如,取n=26,则:
26
13
44
11
第一次
F②
第二次
F①
第三次
F②
…
若n=449,则第449次“F运算”的结果是__________.
第三讲:与一元一次方程有关的问题
一、典型例题
例1.若关于x的一元一次方程=1的解是x=-1,则k的值是( )
A. B.1 C.- D.0
例2.若方程3x-5=4和方程的解相同,则a的值为多少?
例3.(方程与代数式联系)
a、b、c、d为实数,现规定一种新的运算 .
(1)则的值为 ;(2)当 时,= .
例4.(方程的思想)如图,一个瓶身为圆柱体的玻璃瓶内装有高厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h厘米,则瓶内的墨水的体积约占玻璃瓶容积的( )
不考虑瓶子的厚度.
A. B. C. D.
例5. 小杰到食堂买饭,看到A、B两窗口前面排队的人一样多,就站在A窗口队伍的里面,过了2分钟,他发现A窗口每分钟有4人买了饭离开队伍,B窗口每分钟有6人买了饭离开队伍,且B窗口队伍后面每分钟增加5人。此时,若小李迅速从A窗口队伍转移到B窗口后面重新排队,将比继续在A窗口排队提前30秒买到饭,求开始时,有多少人排队。
(提示)题中的等量关系为:小李在A窗口排队所需时间=转移到B窗口排队所需时间+
课外知识拓展:
一、含字母系数方程的解法:
思考:是什么方程?
在一元一次方程的标准形式、最简形式中都要求a≠0,所以不是一元一次方程
我们把它称为含字母系数的方程。
例6.解方程
例7.问当a、b满足什么条件时,方程2x+5-a=1-bx:(1)有唯一解;(2)有无数解;(3)无解。
例 8. 解方程
二、含绝对值的方程解法
例9. 解下列方程
例10. 解方程
例11. 解方程
第四讲:图形的初步认识
基本要求:
1.如图四个图形都是由6个大小相同的正方形组成,其中是正方体展开图的是( )
A.①②③ B.②③④ C.①③④ D.①②④
1
2
3
6
4
5
较高要求:
2.下图可以沿线折叠成一个带数字的正方体,每三个带数字的面交于正方体的
一个顶点,则相交于一个顶点的三个面上的数字之和最小是( )
A. 7 B. 8 C. 9 D. 10
3.一个正方体的展开图如右图所示,每一个面上都写有一个自然数并且相对
两个面所写的两个数之和相等,那么a+b-2c= ( )
A.40 B.38 C.36 D. 34
4.下图是某一立方体的侧面展开图,则该立方体是( )
A.
B.
C.
D.
9.下面是四个立体图形的展开图,则相应的立体图形依次是( )
A.正方体、圆柱、三棱柱、圆锥 B.正方体、圆锥、三棱柱、圆柱
C.正方体、圆柱、三棱锥、圆锥 D.正方体、圆柱、四棱柱、圆锥
13.对右面物体的视图描绘错误的是 ( )
(四)新颖题型
16. 正方体每一面不同的颜色对应着不同的数字,将四个这样的正方体如图拼成一个水平放置的长方体,那么长方体的下底面数字和为 .
第五讲:线段和角
一、知识结构图
二、典型问题:
(一)数线段——数角——数三角形
问题1、直线上有n个点,可以得到多少条线段?
问题2.如图,在∠AOB内部从O点引出两条射线OC、OD,则图中小于平角的角共有( )个
(A) 3 (B) 4 (C) 5 (D) 6
拓展: 在∠AOB内部从O点引出n条射线图中小于平角的角共有多少个?
(二)与线段中点有关的问题
线段的中点定义:
文字语言:若一个点把线段分成相等的两部分,那么这个点叫做线段的中点
图形语言:
几何语言: ∵ M是线段AB的中点
∴ ,
典型例题:
1.由下列条件一定能得到“P是线段AB的中点”的是( )
(A)AP=AB (B)AB=2PB (C)AP=PB (D)AP=PB=AB
2.若点B在直线AC上,下列表达式:①;②AB=BC;③AC=2AB;④AB+BC=AC.
其中能表示B是线段AC的中点的有( )
A.1个 B.2个 C.3个 D.4个
3.已知线段MN,P是MN的中点,Q是PN的中点,R是MQ的中点,那么MR= ______ MN.
4.如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD的长是( )
A 2(a-b) B 2a-b C a+b D a-b
(三)与角有关的问题
1. 已知:一条射线OA,若从点O再引两条射线OB、OC,使∠AOB=600,∠BOC=200,
则∠AOC=____________度(分类讨论)
2. A、O、B共线,OM、ON分别为∠ AOC 、∠ BOC的平分线,猜想∠ MON的度数,试证明你的结论.
3.如图,已知直线和相交于点,是直角,平分,,
求的度数.
4.如图,BO、CO分别平分∠ABC和∠ACB,
(1)若∠A = 60,求∠O;
(2)若∠A =100,∠O是多少?若∠A =120,∠O又是多少?
(3)由(1)、(2)你又发现了什么规律?当∠A的度数发生变化后,你的结论仍成立吗?
(提示:三角形的内角和等于180)
5.如图,O是直线AB上一点,OC、OD、OE是三条射线,则图中互补的角共有( B )对
(A) 2 (B) 3 (C) 4 (D) 5
6.互为余角的两个角( )
(A)只和位置有关 (B)只和数量有关
(C)和位置、数量都有关 (D)和位置、数量都无关
7.已知∠1、∠2互为补角,且∠1>∠2,则∠2的余角是( )
A.(∠1+∠2) B.∠1 C.(∠1-∠2) D.∠2
第六讲:相交线与平行线
一、知识框架
二、典型例题
1.下列说法正确的有( )
①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;
④若两个角不是对顶角,则这两个角不相等.
A.1个 B.2个 C.3个 D.4个
2.如图所示,下列说法不正确的是( )毛
A.点B到AC的垂线段是线段AB; B.点C到AB的垂线段是线段AC
C.线段AD是点D到BC的垂线段; D.线段BD是点B到AD的垂线段
3.下列说法正确的有( )
①在平面内,过直线上一点有且只有一条直线垂直于已知直线;
②在平面内,过直线外一点有且只有一条直线垂直于已知直线;
③在平面内,过一点可以任意画一条直线垂直于已知直线;
④在平面内,有且只有一条直线垂直于已知直线.
A.1个 B.2个 C.3个 D.4个
4.一学员驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,
这两次拐弯的角度可能是( )
A. 第一次向左拐30第二次向右拐30 B. 第一次向右拐50第二次向左拐130
C. 第一次向右拐50第二次向右拐130 D. 第一次向左拐50第二次向左拐130
5.如图,若AC⊥BC于C,CD⊥AB于D,则下列结论必定成立的是( )
A. CD>AD B.AC
BD D. CDc,b+c>a,c+a>b(两点之间线段最短)
由上式可变形得到: a>c-b,b>a-c,c>b-a
即有:三角形的两边之差小于第三边
2. 高:由三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高。
3. 中线:连接三角形的顶点和它对边的中点的线段,称为三角形的中线
4. 角平分线:三角形一个内角的角平分线与这个角对边的交点和这个角的顶点之间线段称为三角形的角平分线.
二、典型例题
(一)三边关系
1.已知三角形三边分别为2,a-1,4,那么a的取值范围是( )
A.1(AB+AC)
(二)三角形的高、中线与角平分线
问题:(1)观察图形,指出图中出现了哪些高线?
(2)图中存在哪些相等角?
注意基本图形:双垂直图形
4.如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,DE⊥AC,DF⊥AB,
垂足分别为E、F,则图中与∠C(∠C除外)相等的角的个数是( )
A.5 B.4 C.3 D.2
5.如图,⊿ABC中,∠A = 40,∠B = 72,CE平分∠ACB,CD⊥AB于D,
DF⊥CE,求∠CDF的度数。
6.⊿ABC中,∠ABC、∠ACB的平分线相交于点O。
(1)若∠ABC = 40,∠ACB = 50,则∠BOC = 。
(2)若∠ABC +∠ACB =116,则∠BOC = 。
(3)若∠A = 76,则∠BOC = 。
(4)若∠BOC = 120,则∠A = 。
(5)你能找出∠A与∠BOC 之间的数量关系吗?
8.已知: BE, CE分别为 △ABC 的外角 ∠ MBC, ∠NCB的角平分线,
求: ∠E与∠A的关系
9.已知: BF为∠ABC的角平分线, CF为外角∠ACG的角平分线,
求: ∠F与∠A的关系
第九讲:与三角形有关的角
一、相关定理
(一)三角形内角和定理:三角形的内角和为180
(二)三角形的外角性质定理:
三角形的任意一个外角等于与它不相邻的两个内角和
三角形的任意一个外角大于任何一个与它不相邻的内角
(三)多边形内角和定理:n边形的内角和为(n-2)*180
多边形外角和定理:多边形的外角和为360
二、典型例题
1.如图,在△ABC中,∠B=∠C,∠BAD=40,且∠ADE=∠AED,求∠CDE的度数.
2.如图:在△ABC中,∠C>∠B,AD⊥BC于D,AE平分∠BAC
求证:∠EAD=(∠C-∠B)
3.已知:CE是△ABC外角∠ACD的角平分线,CE交BA于E
求证:∠BAC>∠B
4.多边形内角和与某一个外角的度数总和是1350,求多边形的边数。
5. 科技馆为某机器人编制一段程序,如果机器人在平地上按照图4中的
步骤行走,那么该机器人所走的总路程为( )
A. 6米 B. 8米 C. 12米 D. 不能确定
第十讲:二元一次方程组
一、相关知识点
1、 二元一次方程的定义:
经过整理以后,方程只有两个未知数,未知数的次数都是1,系数都不为0,这样的整式方程称为二元一次方程。
2、二元一次方程的标准式:
3、 一元一次方程的解的概念:
使二元一次方程左右两边的值相等的一对和的值,叫做这个方程的一个解。
4、 二元一次方程组的定义:
方程组中共含有两个未知数,每个方程都是一次方程,这样的方程组称为二元一次方程组。
5、 二元一次方程组的解:
使二元一次方程组的二个方程左右两边的值相等的两个未知数的值,叫做二元一次方程组的解。
二、典型例题
1.下列方程组中,不是二元一次方程组的是( )
A. B. C.D.
2.有这样一道题目:判断是否是方程组的解?
小明的解答过程是:将,代入方程,等式成立.所以是方程组的解.
小颖的解答过程是:将,分别代入方程和中,得,.所以不是方程组的解.
你认为上面的解答过程哪个对?为什么?
3.若下列三个二元一次方程:3x-y=7;2x+3y=1;y=kx-9有公共解,那么k的取值应是( )
A、k=-4 B、k=4 C、k=-3 D、k=3
4.解方程组
5.已知方程组的解是,则方程组的解是( )
A. B. C. D.
6.
7.解方程组
8.解三元一次方程组
9.字母系数的二元一次方程组。当为何值时,方程组有唯一的解
11.为了改善住房条件,小亮的父母考察了某小区的A、B两套楼房,A套楼房在第3层楼,B套楼房在第5层楼,B套楼房的面积比A套楼房的面积大24平方米,两套楼房的房价相同。第3层楼和第5层楼的房价分别是平均价的1.1倍和0.9倍。为了计算两套楼房的面积,小亮设A套楼房的面积为x 平方米,B套楼房的面积为y平方米,根据以上信息列出下列方程组,其中正确的是( )
A. B. C. D.
12.某水果批发市场香蕉的价格如下表:
购买香蕉数
(千克)
不超过20千克
20千克以上但不超过40千克
40千克以上
每千克价格
6元
5元
4元
张强两次共购买香蕉50千克(第二次多于第一次),共付出264元,请问张强第一次、第二次分别购买香蕉多少千克?
第十一讲:一元一次不等式
一、知识链接:
1.不等式的基本性质
性质1:不等式的两边同时加上(或减去)同一个数或同一个整式,不等号方向不改变。
若a>b,则a+c>b+c(a-c>b-c)。
性质2:不等式的两边同时乘以(或除以)同一个正数,不等号方向不变。
若a>b且c>0,则ac>bc。
性质3:不等式的两边同时乘以(或除以)同一个负数,不等号方向改变。
若a>b且c<0,则acb。即“大大取大” “小小取小” “大小小大取中间” “大大小小取不了”
二、典型例题:
1.下列关系不正确的是( )
A.若,则 B.若,,则
C.若,,则 D.若,,则
2.已知且,为任意有理数,下列式子中正确的是( )
A. B. C. D.
3.下列判断不正确的是( )
A.若,,则 B.若,则
C.若,,则 D.若,则
4.若不等式ax>b的解集是x>,则a的范围是( )
A、a≥0 B、a≤0 C、a>0 D、a<0
5.解关于x的不等式
6.解关于x的不等式。
7
.若不等式是同解不等式,求m的值。
8.不等式组的解集为________________.
9.若不等式组的解是x>3,则m的取值范围是( )
A. B. C. D.
10. 关于x的不等式组 有四个整数解,则a的取值范围是( )
A. B. C. D.
11.已知关于、的方程组的解适合不等式,求的取值范围.
12.解下列不等式(1) (2)
思考题:解下列含绝对值的不等式。
(1) (2)
第十二讲:一元一次不等式(组)的应用
一、典型例题
1.m取什么样的负整数时,关于x的方程的解不小于-3.
2.已知、满足且,求的取值范围.
3.比较和的大小
4.若方程组 的解为x、y,且2
展开阅读全文
相关搜索