八年级上册数学全等三角形全等三角形的判定重要资料汇总整编.doc

举报
资源描述
,. 三角形知识点导学案 1. 三角形的概念 由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。 三角形 不等腰三角形 (至少两边相等) 等腰三角形 底边和腰不等的等腰三角形 等边三角形(三边都相等) 2.三角形按边分类 3. 三角形三边的关系(重点) 三角形的任意两边之和大于第三边。 三角形的任意两边之差小于第三边。(这两个条件满足其中一个即可) 用数学表达式表达就是:记三角形三边长分别是a,b,c,则a+b>c或c-b<a。 已知三角形两边的长度分别为a,b,求第三边长度的范围:|a-b|<c<a+b 要求会的题型: ①数三角形的个数 方法:分类,不要重复或者多余。 ②给出三条线段的长度或者三条线段的比值,要求判断这三条线段能否组成三角形 方法:最小边+较小边>最大边不用比较三遍,只需比较一遍即可 ③给出多条线段的长度,要求从中选择三条线段能够组成三角形 方法:从所给线段的最大边入手,依次寻找较小边和最小边;直到找完为止,注意不要找重,也不要漏掉。 ④已知三角形两边的长度分别为a,b,求第三边长度的范围 方法:第三边长度的范围:|a-b|<c<a+b ⑤给出等腰三角形的两边长度,要求等腰三角形的底边和腰的长 方法:因为不知道这两边哪条边是底边,哪条边是腰,所以要分类讨论,讨论完后要写“综上”,将上面讨论的结果做个总结。 三角形的高、中线与角平分线 1. 三角形的高 从△ABC的顶点向它的对边BC所在的直线画垂线,垂足为D,那么线段AD叫做△ABC的边BC上的高。 三角形的三条高的交于一点,这一点叫做“三角形的垂心”。 2. 三角形的中线 连接△ABC的顶点A和它所对的对边BC的中点D,所得的线段AD叫做△ABC的边BC上的中线。BD=DC=BC. 三角形三条中线的交于一点,这一点叫做“三角形的重心”。 三角形的中线可以将三角形分为面积相等的两个小三角形。 3. 三角形的角平分线 ∠A的平分线与对边BC交于点D,那么线段AD叫做三角形的角平分线。 ∠1=∠2=∠BAC. 要区分三角形的“角平分线”与“角的平分线”,其区别是:三角形的角平分线是条线段;角的平分线是条射线。 三角形三条角平分线的交于一点,这一点叫做“三角形的内心”。 要求会的题型: ①已知三角形中两条高和其所对的底边中的三个长度,求其中未知的高或者底边的长度 方法:利用“等积法”,将三角形的面积用两种方式表达,求出未知量。 三角形的稳定性 1. 三角形具有稳定性 2. 四边形及多边形不具有稳定性 要使多边形具有稳定性,方法是将多边形分成多个三角形,这样多边形就具有稳定性了。 三角形的内角 1. 三角形的内角和定理 三角形的内角和为180,与三角形的形状无关。 2. 直角三角形两个锐角的关系 直角三角形的两个锐角互余(相加为90)。 有两个角互余的三角形是直角三角形。 三角形的外角 1. 三角形外角的意义 三角形的一边与另一边的延长线组成的角叫做三角形的外角。 2. 三角形外角的性质 三角形的一个外角等于与它不相邻的两个内角之和。 三角形的一个外角大于与它不相邻的任何一个内角。 多边形 1. 多边形的概念 在平面中,由一些线段首尾顺次相接组成的图形叫做多边形,多边形中相邻两边组成的角叫做它的内角。多边形的边与它邻边的延长线组成的角叫做外角。 连接多边形不相邻的两个顶点的线段叫做多边形的对角线。 一个n边形从一个顶点出发的对角线的条数为(n-3)条,其所有的对角线条数为12n(n-3). 3. 正多边形 各角相等,各边相等的多边形叫做正多边形。(两个条件缺一不可,除了三角形以外,因为若三角形的三内角相等,则必有三边相等,反过来也成立) 要求会的题型: ①告诉多边形的边数,求多边形过一个顶点的对角线条数或求多边形全部对角线的条数 方法:一个n边形从一个顶点出发的对角线的条数为(n-3)条,其所有的对角线条数为12n(n-3).将边数带入公式即可。 多边形的内角和 1. n边形的内角和定理 n边形的内角和为(n-2)∙180 2. n边形的外角和定理 多边形的外角和等于360,与多边形的形状和边数无关。 全等三角形的判定 一、本节学习指导 本节较难,考试题目千变万化,更是容易和其他几何联合起来出题,同学们要牢牢的掌握好。 二、知识要点 1、两个三角形全等的条件【重点】 (1)判定1——边边边公理   三边对应相等的两个三角形全等,简写成“边边边”或“SSS”。   “边边边”公理的实质:三角形的稳定性(用三根木条钉三角形木架)。 注意:边边边是三条边都相等,并且在书写时边与边要对应书写。在已知两边相等的情况下优先考虑。 (2)判定2——边角边公理   两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”。 注意:边角边中,角是指两对应边的夹角,如上图中,同样在书写时对应边角对准。 比如上图中正确的写法是:△ABC≌△A'B'C' (3)判定3——角边角公理   两角和它们的夹边对应相等的两个三角形全等。简写为“角边角”或“ASA”。 注意:角边角中,边是两个角中间时,才能描述为角边角,否则就是下面的角角边。 (4)判定4——角角边推论   两角和其中一角的对边对应相等的两个三角形全等。简称“角角边”或“AAS”。 (5)直角三角形全等的判定——斜边直角边公理   斜边和一条直角边对应相等的两个直角三角形全等。简写成“斜边直角边”或“HL”。   判定直角三角形全等的方法:   ①一般三角形全等的判定方法都适用;   ②斜边-直角边公理 2、证明三角形全等一般有以下步骤: (1)读题:明确题中的已知和求证; (2)要观察待证的线段或角,在哪两个可能全等的三角形中 (3)、分析要证两个三角形全等,已有什么条件,还缺什么条件。有公共边的,公共边一定是对应边, 有公共角的,公共角一定是对应角,有对顶角,对顶角也是对应角 (4)、先证明缺少的条件 (5)、再证明两个三角形全等 三、经验之谈: 对于常见的四种判定三角形全等的方法我们都要掌握,并且知道“边”是什么边,“角”是什么角,上面中并没有“边边角”这点要记牢了。本节是非常重要的一章节,同学们一定要多做练习题,不会的要向老师及时请教 全等三角形的性质: 全等三角形的对应边相等;全等三角形的对应角相等。 ∵△ABC≌△A'B'C' ∴AB=A'B',BC=B'C',AC=A'C'; ∠A=∠A', ∠B=∠B', ∠C=∠C' 二、知识要点 1、角平分线的定义:从一个角的顶点出发把一个角分成两个相等的角的射线叫做角的平分线。 如右图:OC平分∠AOB ∵OC平分∠AOB ∴∠AOC=∠BOC 2、角的平分线的性质:角平分线上的点到角的两边的距离相等。【重点】 如上图: ∵OC平分∠AOB(或∠1=∠2),PE⊥OA,PD⊥OB ∴PD=PE,此时我们知道△OPE≌△OPD(直角三角形 斜边是OP即公共边,直角边斜边) 3、角的平分线的判定:角的内部到角的两边距离相等的点在角的平分线上。 如上图: ∵PE⊥OA,PD⊥OB,PD=PE ∴OC平分∠AOB(或∠1=∠2) 4、线段的中点的定义:把一条线段分成两条相等的线段的点叫做线段的中点。 如右图: ∵C是AB的中点 ∴AC=BC 5、垂直的定义:两条直线相交所成的四个角中有一个是直角,这两条直线互相垂直。 如右图:【重点】 ∵AB⊥CD ∴∠AOC=∠AOD=∠BOC =∠BOD=90 或∵∠AOC=90 ∴AB⊥CD 注意:要判断两条直线垂直,只要知道这两条相交直线所形成的四个角中的一个角是直角就可以了。反过来,两条直线互相垂直,它们的四个交角都是直角。
展开阅读全文
相关搜索
温馨提示:
taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。

当前位置:首页 > 教育专区 > 教案示例


本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁