高考专题训练四导数与积分的概念及运算、导数的应用.doc

上传人:赵** 文档编号:25782149 上传时间:2022-07-13 格式:DOC 页数:6 大小:82.50KB
返回 下载 相关 举报
高考专题训练四导数与积分的概念及运算、导数的应用.doc_第1页
第1页 / 共6页
高考专题训练四导数与积分的概念及运算、导数的应用.doc_第2页
第2页 / 共6页
点击查看更多>>
资源描述

《高考专题训练四导数与积分的概念及运算、导数的应用.doc》由会员分享,可在线阅读,更多相关《高考专题训练四导数与积分的概念及运算、导数的应用.doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、高考专题训练四 导数与积分的概念及运算、导数的应用一、选择题:本大题共6小题,每题5分,共30分在每题给出的四个选项中,选出符合题目要求的一项填在答题卡上1(全国)曲线ye2x1在点(0,2)处的切线与直线y0和yx围成的三角形的面积为()A.B.C. D1解析:y2e2x,y|x02,在点(0,2)处的切线为:y22x,即2xy20由得,A,SABO.答案:A2(辽宁)函数f(x)的定义域为R,f(1)2,对任意xR,f(x)2,那么f(x)2x4的解集为()A(1,1) B(1,)C(,1) D(,)解析:f(x)2x4,即f(x)2x40.构造F(x)f(x)2x4,F(x)f(x)20

2、.F(x)在R上为增函数,而F(1)f(1)2x(1)40.x(1,),F(x)F(1),x1.答案:B3(烟台市高三年级诊断性检测)设a(sinxcosx)dx,那么(a)6的二项展开式中含x2的系数是()A192 B192C96 D96解析:因为a(sinxcosx)dx(cosxsinx)(cossin)(cos0sin0)2,所以(a)66,那么可知其通项Tr1(1)rC26rx(1)rC26rx3r,令3r2r1,所以展开式中含x2项的系数是(1)rC26r(1)1C261192,故答案选B.答案:B4(山东省高考调研卷)函数f(x)x3x2x,那么f(a2)与f(4)的大小关系为(

3、)Af(a2)f(4)Bf(a2)f(4)Cf(a2)f(4)Df(a2)与f(4)的大小关系不确定解析:f(x)x3x2x,f(x)x22x.由f(x)(3x7)(x1)0得x1或x.当x1时,f(x)为增函数;当1x时,f(x)为增函数,计算可得f(1)f(4)2,又a20,由图象可知f(a2)f(4)答案:A5(山东省高考调研卷)函数f(x)x3bx23x1(bR)在xx1和xx2(x1x2)处都取得极值,且x1x22,那么以下说法正确的选项是()Af(x)在xx1处取极小值,在xx2处取极小值Bf(x)在xx1处取极小值,在xx2处取极大值Cf(x)在xx1处取极大值,在xx2处取极小

4、值Df(x)在xx1处取极大值,在xx2处取极大值解析:因为f(x)x3bx23x1,所以f(x)3x22bx3,由题意可知f(x1)0,f(x2)0,即x1,x2为方程3x22bx30的两根,所以x1x2,由x1x22,得bf(x)x33x1,f(x)3x233(x1)(x1),由于x1x2,所以x11,x21,当x(,1)时,f(x)0,所以f(x)在x11处取极小值,极小值为f(1)1,在x21处取极大值,极大值为f(1)3.答案:B6(合肥市高三第三次教学质量检测)对任意x1,x2(0,),x2x1,y1,y2,那么()Ay1y2By1y2Cy1y2Dy1,y2的大小关系不能确定解析:

5、设f(x),那么f(x).当x(0,)时,xtanx0,故f(x)x1得y2y1.答案:B二、填空题:本大题共4小题,每题5分,共20分把答案填在答题卡上7(广东)函数f(x)x33x21在x_处取得极小值解析:由f(x)3x26x3x(x2)0,解得x10,x22当x0,当0x2时,f(x)2时,f(x)0.当x2时,f(x)有极小值是f(2)2332213.答案:28(潍坊市高三第一次教学质量检测)假设等比数列an的首项为,且a4(12x)dx,那么公比等于_解析:(12x)dx(xx2)|(416)(11)18,即a418q3q3.答案:39(山东省高考调研卷)函数f(x)3x22x1,

6、假设f(x)dx2f(a)成立,那么a_.解析:因为f(x)dx (3x22x1)dx(x3x2x)|4,所以2(3a22a1)4a1或a.答案:1或10(山东省高考调研卷)曲线y2x2e2x,直线x1,xe和x轴所围成的区域的面积是_解析:(2x2e2x)dxdx2xdx2e2xdxlnx|x2|e2x|e2e.答案:e2e三、解答题:本大题共2小题,共25分解容许写出文字说明、证明过程或演算步骤11(12分)(北京)函数f(x)(xk)2(1)求f(x)的单调区间;(2)假设对于任意的x(0,),都有f(x),求k的取值范围解:(1)f(x)(x2k2) 令f(x)0,得xk当k0时,f(

7、x)与f(x)的情况如下:x(x,k)k(k,k)k(k,)f(x)00f(x)4k2e10所以,f(x)的单调递增区间是(,k),(k,);单调递减区间是(k,k)当k0时,因为f(k1),所以不会有x(0,),f(x)当k0时,由(1)知f(x)在(0,)上的最大值是f(k)所以x(0,),f(x)等价于f(k).解得k0,且x1时,f(x),求k的取值范围解:(1)f(x).由于直线x2y30的斜率为,且过点(1,1),故,即解得a1,b1.(2)由(1)知f(x),所以f(x).考虑函数h(x)2lnx(x0),那么h(x).()设k0,那么h(x)知,当x1时,h(x)0,可得h(x)0;当x(1,)时,h(x)0.从而当x0,且x1时,f(x)0,即f(x).()设0k0,故h(x)0.而h(1)0,故当x时,h(x)0,可得h(x)0,而h(1)0,故当x(1,)时,h(x)0,可得h(x)0,与题设矛盾综合得,k的取值范围为(,0

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 管理文献 > 管理方法

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁