九年级数学旋转全章教育教程教案资料汇总.doc

举报
资源描述
\\ 第二十三章 旋转 单元要点分析 教学内容 1.主要内容: 图形的旋转及其有关概念:包括旋转、旋转中心、旋转角.图形旋转的有关性质:对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前、后的图形全等.通过不同形式的旋转,设计图案.中心对称及其有关概念:中心对称、对称中心、关于中心的对称点;关于中心对称的两个图形.中心对称的性质:对称点所连线段都经过对称中心,而且被对称中心所平分;关于中心对称的两个图形是全等图形.中心对称图形:概念及性质:包括中心对称图形、对称中心.关于原点对称的点的坐标:两个点关于原点对称时,它们的坐标符号都相反,即点P(x,y)关于原点的对称点为P′(-x,-y).课题学习.图案设计. 2.本单元在教材中的地位与作用: 学生通过平移、平面直角坐标系,轴对称、反比例函数、四边形等知识的学习,初步积累了一定的图形变换数学活动经验.本章在此基础上,让学生进行观察、分析、画图、简单图案的欣赏与设计等操作性活动形成图形旋转概念.它又对今后继续学习数学,尤其是几何,包括圆等内容的学习起着桥梁铺垫之作用. 教学目标 1.知识与技能 了解图形的旋转的有关概念并理解它的基本性质. 了解中心对称的概念并理解它的基本性质. 了解中心对称图形的概念;掌握关于原点对称的两点的关系并应用;再通过几何操作题的练习,掌握课题学习中图案设计的方法. 2.过程与方法 (1)让学生感受生活中的几何,通过不同的情景设计归纳出图形旋转的有关概念,并用这些概念来解决一些问题. (2)通过复习图形旋转的有关概念从中归纳出“对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前后的图形全等”等重要性质,并运用它解决一些实际问题. (3)经历复习图形的旋转的有关概念和性质,分析不同的旋转中心,不同的旋转角,出现不同的效果并对各种情况进行分类. (4)复习对称轴和轴对称图形的有关概念,通过知识迁移讲授中心对称图形和对称中心的有关内容,并附加练习巩固这个内容. (5)通过几何操作题,探究猜测发现规律,并给予证明,附加例题进一步巩固. (6)复习中心对称图形和对称中心的有关概念,然后提出问题,让学生观察、思考,老师归纳得出中心对称图形和对称中心的有关概念,最后用一些例题、练习来巩固这个内容. (7)复习平面直角坐标系的有关概念,通过实例归纳出两个点关于原点对称时,坐标符号之间的关系,并运用它解决一些实际问题. (8)通过复习平移、轴对称、旋转等有关概念研究如何进行图形设计. 3.情感、态度与价值观 让学生经历观察、操作等过程,了解图形旋转的概念,从事图形旋转基本性质的探索活动,进一步发展空间观察,培养运动几何的观点,增强审美意识.让学生通过独立思考,自主探究和合作交流进一步体会旋转的数学内涵,获得知识,体验成功,享受学习乐趣.让学生从事应用所学的知识进行图案设计的活动,享受成功的喜悦,激发学习热情. 教学重点 1.图形旋转的基本性质. 2.中心对称的基本性质. 3.两个点关于原点对称时,它们坐标间的关系. 教学难点 1.图形旋转的基本性质的归纳与运用. 2.中心对称的基本性质的归纳与运用. 教学关键 1.利用几何直观,经历观察,产生概念; 2.利用几何操作,通过观察、探究,用不完全归纳法归纳出图形的旋转和中心对称的基本性质. 单元课时划分 本单元教学时间约需10课时,具体分配如下: 23.1 图形的旋转 3课时 23.2 中心对称 4课时 23.3 课题学习;图案设计 1课时 教学活动、习题课、小结 2课时 23.1 图形的旋转(1) 第一课时 教学内容 1.什么叫旋转?旋转中心?旋转角? 2.什么叫旋转的对应点? 教学目标 了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题. 通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题. 重难点、关键 1.重点:旋转及对应点的有关概念及其应用. 2.难点与关键:从活生生的数学中抽出概念. 教具、学具准备 小黑板、三角尺 教学过程 一、复习引入 (学生活动)请同学们完成下面各题. 1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形. 2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′. 3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗? (口述)老师点评并总结: (1)平移的有关概念及性质. (2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它既有的一些性质. (3)什么叫轴对称图形? 二、探索新知 我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究. 1.请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度? (口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度. 2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略) 3.第1、2两题有什么共同特点呢? 共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度. 像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角. 如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点. 下面我们来运用这些概念来解决一些问题. 例1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中: (1)旋转中心是什么?旋转角是什么? (2)经过旋转,点A、B分别移动到什么位置? 解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角. (2)经过旋转,点A和点B分别移动到点E和点F的位置. 例2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形. (1)这个图案可以看做是哪个“基本图案”通过旋转得到的? (2)请画出旋转中心和旋转角. (3)指出,经过旋转,点A、B、C、D分别移到什么位置? (老师点评) (1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H. 最后强调,这个旋转中心是固定的,即正方形对角线的交点,但旋转角和对应点都是不唯一的. 三、巩固练习 教材P65 练习1、2、3. 四、应用拓展 例3.两个边长为1的正方形,如图所示,让一个正方形的顶点与另一个正方形中心重合,不难知道重合部分的面积为,现把其中一个正方形固定不动,另一个正方形绕其中心旋转,问在旋转过程中,两个正方形重叠部分面积是否发生变化?说明理由. 分析:设任转一角度,如图中的虚线部分,要说明旋转后正方形重叠部分面积不变,只要说明S△OEE`=S△ODD`,那么只要说明△OEF′≌△ODD′. 解:面积不变. 理由:设任转一角度,如图所示. 在Rt△ODD′和Rt△OEE′中 ∠ODD′=∠OEE′=90 ∠DOD′=∠EOE′=90-∠BOE OD=OD ∴△ODD′≌△OEE′ ∴S△ODD`=S△OEE` ∴S四边形OE`BD`=S正方形OEBD= 五、归纳小结(学生总结,老师点评) 本节课要掌握: 1.旋转及其旋转中心、旋转角的概念. 2.旋转的对应点及其它们的应用. 六、布置作业 1.教材P66 复习巩固1、2、3. 2.《同步练习》 一、选择题 1.在26个英文大写字母中,通过旋转180后能与原字母重合的有( ). A.6个 B.7个 C.8个 D.9个 2.从5点15分到5点20分,分针旋转的度数为( ). A.20 B.26 C.30 D.36 3.如图1,在Rt△ABC中,∠ACB=90,∠A=40,以直角顶点C为旋转中心,将△ABC旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角等于( ). A.70 B.80 C.60 D.50 (1) (2) (3) 二、填空题. 1.在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为________,这个定点称为________,转动的角为________. 2.如图2,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,点E在AB上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点_________;旋转的度数是__________. 3.如图3,△ABC为等边三角形,D为△ABC内一点,△ABD经过旋转后到达△ACP的位置,则,(1)旋转中心是________;(2)旋转角度是________;(3)△ADP是________三角形. 三、综合提高题. 1.阅读下面材料: 如图4,把△ABC沿直线BC平行移动线段BC的长度,可以变到△ECD的位置. 如图5,以BC为轴把△ABC翻折180,可以变到△DBC的位置. (4) (5) (6) (7) 如图6,以A点为中心,把△ABC旋转90,可以变到△AED的位置,像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状和大小的图形变换,叫做三角形的全等变换. 回答下列问题 如图7,在正方形ABCD中,E是AD的中点,F是BA延长线上一点,AF=AB. (1)在如图7所示,可以通过平行移动、翻折、旋转中的哪一种方法,使△ABE移到△ADF的位置? (2)指出如图7所示中的线段BE与DF之间的关系. 2.一块等边三角形木块,边长为1,如图,现将木块沿水平线翻滚五个三角形,那么B点从开始至结束所走过的路径长是多少? 答案: 一、1.B 2.C 3.B 二、1.旋转 旋转中心 旋转角 2.A 45 3.点A 60 等边 三、1.(1)通过旋转,即以点A为旋转中心,将△ABE逆时针旋转90. (2)BE=DF,BE⊥DF 2.翻滚一次 滚120 翻滚五个三角形,正好翻滚一个圆,所以所走路径是2. 23.1 图形的旋转(2) 第二课时 教学内容 1.对应点到旋转中心的距离相等. 2.对应点与旋转中心所连线段的夹角等于旋转角. 3.旋转前后的图形全等及其它们的运用. 教学目标 理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用. 先复习旋转及其旋转中心、旋转角和旋转的对应点概念,接着用操作几何、实验探究图形的旋转的基本性质. 重难点、关键 1.重点:图形的旋转的基本性质及其应用. 2.难点与关键:运用操作实验几何得出图形的旋转的三条基本性质. 教学过程 一、复习引入 (学生活动)老师口问,学生口答. 1.什么叫旋转?什么叫旋转中心?什么叫旋转角? 2.什么叫旋转的对应点? 3.请独立完成下面的题目. 如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形? (老师点评)分析:能.看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60、120、180、240、300形成的. 二、探索新知 上面的解题过程中,能否得出什么结论,请回答下面的问题: 1.A、B、C、D、E、F到O点的距离是否相等? 2.对应点与旋转中心所连线段的夹角∠BOC、∠COD、∠DOE、∠EOF、∠FOA是否相等? 3.旋转前、后的图形这里指三角形△OAB、△OBC、△OCD、△ODE、△OEF、△OFA全等吗? 老师点评:(1)距离相等,(2)夹角相等,(3)前后图形全等,那么这个是否有一般性?下面请看这个实验. 请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板. (分组讨论)根据图回答下面问题(一组推荐一人上台说明) 1.线段OA与OA′,OB与OB′,OC与OC′有什么关系? 2.∠AOA′,∠BOB′,∠COC′有什么关系? 3.△ABC与△A′B′C′形状和大小有什么关系? 老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心相等. 2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角. 3.△ABC和△A′B′C′形状相同和大小相等,即全等. 综合以上的实验操作和刚才作的(3),得出 (1)对应点到旋转中心的距离相等; (2)对应点与旋转中心所连线段的夹角等于旋转角; (3)旋转前、后的图形全等. 例1.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B对应点的位置,以及旋转后的三角形. 分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示. 解:(1)连结CD (2)以CB为一边作∠BCE,使得∠BCE=∠ACD (3)在射线CE上截取CB′=CB 则B′即为所求的B的对应点. (4)连结DB′ 则△DB′C就是△ABC绕C点旋转后的图形. 例2.如图,四边形ABCD是边长为1的正方形,且DE=,△ABF是△ADE的旋转图形. (1)旋转中心是哪一点? (2)旋转了多少度? (3)AF的长度是多少? (4)如果连结EF,那么△AEF是怎样的三角形? 分析:由△ABF是△ADE的旋转图形,可直接得出旋转中心和旋转角,要求AF的长度,根据旋转前后的对应线段相等,只要求AE的长度,由勾股定理很容易得到.△ABF与△ADE是完全重合的,所以它是直角三角形. 解:(1)旋转中心是A点. (2)∵△ABF是由△ADE旋转而成的 ∴B是D的对应点 ∴∠DAB=90就是旋转角 (3)∵AD=1,DE= ∴AE== ∵对应点到旋转中心的距离相等且F是E的对应点 ∴AF= (4)∵∠EAF=90(与旋转角相等)且AF=AE ∴△EAF是等腰直角三角形. 三、巩固练习 教材P64 练习1、2. 四、应用拓展 例3.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系. 分析:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明. 解:∵四边形ABCD、四边形AKLM是正方形 ∴AB=AD,AK=AM,且∠BAD=∠KAM为旋转角且为90 ∴△ADM是以A为旋转中心,∠BAD为旋转角由△ABK旋转而成的 ∴BK=DM 五、归纳小结(学生总结,老师点评) 本节课应掌握: 1.对应点到旋转中心的距离相等; 2.对应点与旋转中心所连线段的夹角等于旋转角; 3.旋转前、后的图形全等及其它们的应用. 六、布置作业 1.教材P66 复习巩固4 综合运用5、6. 2.作业设计. 作业设计 一、选择题 1.△ABC绕着A点旋转后得到△AB′C′,若∠BAC′=130,∠BAC=80,则旋转角等于( ) A.50 B.210 C.50或210 D.130 2.在图形旋转中,下列说法错误的是( ) A.在图形上的每一点到旋转中心的距离相等 B.图形上每一点移动的角度相同 C.图形上可能存在不动的点 D.图形上任意两点的连线与其对应两点的连线长度相等 3.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是( ) 二、填空题 1.在作旋转图形中,各对应点与旋转中心的距离________. 2.如图,△ABC和△ADE均是顶角为42的等腰三角形,BC、DE分别是底边,图中的△ABD绕A旋转42后得到的图形是________,它们之间的关系是______,其中BD=_________. 3.如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F,∠EAF=45,在保持∠EAF=45的前提下,当点E、F分别在边BC、CD上移动时,BE+DF与EF的关系是________. 三、综合提高题 1.如图,正方形ABCD的中心为O,M为边上任意一点,过OM随意连一条曲线,将所画的曲线绕O点按同一方向连续旋转3次,每次旋转角度都是90,这四个部分之间有何关系? 2.如图,以△ABC的三顶点为圆心,半径为1,作两两不相交的扇形,则图中三个扇形面积之和是多少? 3.如图,已知正方形ABCD的对角线交于O点,若点E在AC的延长线上,AG⊥EB,交EB的延长线于点G,AG的延长线交DB的延长线于点F,则△OAF与△OBE重合吗?如果重合给予证明,如果不重合请说明理由? 答案: 一、1.C 2.A 3.D 二、1.相等 2.△ACE 图形全等 CE 3.相等 三、1.这四个部分是全等图形 2.∵∠A+∠B+∠C=180, ∴绕AB、AC的中点旋转180,可以得到一个半圆, ∴面积之和=. 3.重合:证明:∵EG⊥AF ∴∠2+∠3=90 ∵∠3+∠1+90=180 ∵∠1+∠3=90 ∴∠1=∠2 同理∠E=∠F,∵四边形ABCD是正方形,∴AB=BC ∴△ABF≌△BCE,∴BF=CE,∴OE=OF,∵OA=OB ∴△OBE绕O点旋转90便可和△OAF重合. 23.1 图形的旋转(3) 第三课时 教学内容 选择不同的旋转中心或不同的旋转角,设计出不同的美丽的图案. 教学目标 理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果,掌握根据需要用旋转的知识设计出美丽的图案. 复习图形旋转的基本性质,着重强调旋转中心和旋转角然后应用已学的知识作图,设计出美丽的图案. 重难点、关键 1.重点:用旋转的有关知识画图. 2.难点与关键:根据需要设计美丽图案. 教具、学具准备 小黑板 教学过程 一、复习引入 1.(学生活动)老师口问,学生口答. (1)各对应点到旋转中心的距离有何关系呢? (2)各对应点与旋转中心所连线段的夹角与旋转角有何关系? (3)两个图形是旋转前后的图形,它们全等吗? 2.请同学独立完成下面的作图题. 如图,△AOB绕O点旋转后,G点是B点的对应点,作出△AOB旋转后的三角形. (老师点评)分析:要作出△AOB旋转后的三角形,应找出三方面:第一,旋转中心:O;第二,旋转角:∠BOG;第三,A点旋转后的对应点:A′. 二、探索新知 从上面的作图题中,我们知道,作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究. 1.旋转中心不变,改变旋转角 画出以下图所示的四边形ABCD以O点为中心,旋转角分别为30、60的旋转图形. 2.旋转角不变,改变旋转中心 画出以下图,四边形ABCD分别为O、O为中心,旋转角都为30的旋转图形. 因此,从以上的画图中,我们可以得到旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案. 例1.如下图是菊花一叶和中心与圆圈,现以O为旋转中心画出分别旋转45、90、135、180、225、270、315的菊花图案. 分析:只要以O为旋转中心、旋转角以上面为变化,旋转长度为菊花的最长OA,按菊花叶的形状画出即可. 解:(1)连结OA (2)以O点为圆心,OA长为半径旋转45,得A. (3)依此类推画出旋转角分别为90、135、180、225、270、315的A、A、A、A、A、A. (4)按菊花一叶图案画出各菊花一叶. 那么所画的图案就是绕O点旋转后的图形. 例2.(学生活动)如图,如果上面的菊花一叶,绕下面的点O′为旋转中心,请同学画出图案,它还是原来的菊花吗? 老师点评:显然,画出后的图案不是菊花,而是另外的一种花了. 三、巩固练习 教材P65 练习. 四、应用拓展 例3.如图,如何作出该图案绕O点按逆时针旋转90的图形. 分析:该备案是一个比较复杂的图案,是作出几个复合图形组成的图案,因此,要先画出图中的关键点,这些关键点往往是图案里线的端点、角的顶点、圆的圆心等,然后再根据旋转的特征,作出这些关键点的对应点,最后再按原图案作出旋转后的图案. 解:(1)连结OA,过O点沿OA逆时针作∠AOA′=90,在射线OA′上截取OA′=OA; (2)用同样的方法分别求出B、C、D、E、F、G、H的对应点B′、C′、D′、E′、F′、G′、H′; (3)作出对应线段A′B′、B′C′、C′D′、D′E′、E′F′、F′A′、A′G′、G′D′、D′H′、H′A′; (4)所作出的图案就是所求的图案. 五、归纳小结(学生归纳,老师点评) 本节课应掌握: 1.选择不同的旋转中心、不同的旋转角,设计出美丽的图案; 2.作出几个复合图形组成的图案旋转后的图案,要先求出图中的关键点──线的端点、角的顶点、圆的圆心等. 六、布置作业 1.教材P67 综合运用7、8、9. 2.选作课时作业设计. 第三课时作业设计 一、选择题 1.如图,摆放有五杂梅花,下列说法错误的是(以中心梅花为初始位置)( ) A.左上角的梅花只需沿对角线平移即可 B.右上角的梅花需先沿对角线平移后,再顺时针旋转45 C.右下角的梅花需先沿对角线平移后,再顺时针旋转180 D.左下角的梅花需先沿对角线平移后,再顺时针旋转90 2.同学们曾玩过万花筒吧,它是由三块等宽等长的玻璃镜片围成的,如图23-33是看到的万花筒的一个图案,图中所有三角形均是等边三角形,其中的菱形AEFG可以看成把菱形ABCD以A为中心( ) A.顺时针旋转60得到的 B.顺时针旋转120得到的 C.逆时针旋转60得到的 D.逆时针旋转120得到的 3.下面的图形23-34,绕着一个点旋转120后,能与原来的位置重合的是( ) A.(1),(4) B.(1),(3) C.(1),(2) D.(3),(4) 二、填空题 1.如图,五角星也可以看作是一个三角形绕中心点旋转_______次得到的,每次旋转的角度是________. 2.图形之间的变换关系包括平移、_______、轴对称以及它们的组合变换. 3.如图,过圆心O和图上一点A连一条曲线,将OA绕O点按同一方向连续旋转三次,每次旋转90,把圆分成四部分,这四部分面积_________. 三、综合提高题. 1.请你利用线段、三角形、菱形、正方形、圆作为“基本图案”绘制一幅以“校运动会”为主题的徽标. 2.如图,是某设计师设计的方桌布图案的一部分,请你运用旋转的方法,将该图案绕原点O顺时针依次旋转90、180、270,并画出图形,你来试一试吧!但是涂阴影时,要注意利用旋转变换的特点,不要涂错了位置,否则你将得不到理想的效果,并且还要扣分的噢! 3.如图,△ABC的直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=3,求PP′的长. 答案: 一、1.D 2.D 3.C 二、1.4 72 2.旋转 3.相等 三、1.答案不唯一,学生设计的只要符合题目的要求,都应给予鼓励. 2.略 3.∵△ABP绕点A逆时针旋转后,能与△ACP′重合, ∴AP′=AP,∠CAP′=∠BAP, ∴∠PAP′=∠PAC+∠CAP′=∠PAC+∠BAP=∠BAC=90, △PAP′为等腰直角三角形,PP′为斜边, ∴PP′=AP=3. 23.2 中心对称(1) 第一课时 教学内容 两个图形关于这个点对称或中心对称、对称中心、关于中心的对称点等概念及其运用它们解决一些实际问题. 教学目标 了解中心对称、对称中心、关于中心的对称点等概念及掌握这些概念解决一些问题. 复习运用旋转知识作图,旋转角度变化,设计出不同的美丽图案来引入旋转180的特殊旋转──中心对称的概念,并运用它解决一些实际问题. 重难点、关键 1.重点:利用中心对称、对称中心、关于中心对称点的概念解决一些问题. 2.难点与关键:从一般旋转中导入中心对称. 教具、学具准备 小黑板、三角尺 教学过程 一、复习引入 请同学们独立完成下题. 如图,△ABC绕点O旋转,使点A旋转到点D处,画出旋转后的三角形,并写出简要作法. 老师点评:分析,本题已知旋转后点A的对应点是点D,且旋转中心也已知,所以关键是找出旋转角和旋转方向.显然,逆时针或顺时针旋转都符合要求,一般我们选择小于180的旋转角为宜,故本题选择的旋转方向为顺时针方向;已知一对对应点和旋转中心,很容易确定旋转角.如图,连结OA、OD,则∠AOD即为旋转角.接下来根据“任意一对对应点与旋转中心的连线所成的角都是旋转角”和“对应点到旋转中心的距离相等”这两个依据来作图即可. 作法:(1)连结OA、OB、OC、OD; (2)分别以OB、OB为边作∠BOM=∠CON=∠AOD; (3)分别截取OE=OB,OF=OC; (4)依次连结DE、EF、FD; 即:△DEF就是所求作的三角形,如图所示. 二、探索新知 问题:作出如图的两个图形绕点O旋转180的图案,并回答下列的问题: 1.以O为旋转中心,旋转180后两个图形是否重合? 2.各对称点绕O旋转180后,这三点是否在一条直线上? 老师点评:可以发现,如图所示的两个图案绕O旋转180都是重合的,即甲图与乙图重合,△OAB与△COD重合. 像这样,把一个图形绕着某一个点旋转180,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心. 这两个图形中的对应点叫做关于中心的对称点. 例1.如图,四边形ABCD绕D点旋转180,请作出旋转后的图案,写出作法并回答. (1)这两个图形是中心对称图形吗?如果是对称中心是哪一点?如果不是,请说明理由. (2)如果是中心对称,那么A、B、C、D关于中心的对称点是哪些点. 分析:(1)根据中心对称的定义便直接可知这两个图形是中心对称图形,对称中心就是旋转中心. (3)旋转后的对应点,便是中心的对称点. 解:作法:(1)延长AD,并且使得DA′=AD (2)同样可得:BD=B′D,CD=C′D (3)连结A′B′、B′C′、C′D,则四边形A′B′C′D为所求的四边形,如图23-44所示. 答:(1)根据中心对称的定义便知这两个图形是中心对称图形,对称中心是D点. (2)A、B、C、D关于中心D的对称点是A′、B′、C′、D′,这里的D′与D重合. 例2.如图,已知AD是△ABC的中线,画出以点D为对称中心,与△ABD成中心对称的三角形. 分析:因为D是对称中心且AD是△ABC的中线,所以C、B为一对的对应点,因此,只要再画出A关于D的对应点即可. 解:(1)延长AD,且使AD=DA′,因为C点关于D的中心对称点是B(C′),B点关于中心D的对称点为C(B′) (2)连结A′B′、A′C′. 则△A′B′C′为所求作的三角形,如图所示. 三、巩固练习 教材P74 练习2. 四、应用拓展 例3.如衅,在△ABC中,∠C=70,BC=4,AC=4,现将△ABC沿CB方向平移到△A′B′C′的位置. (1)若平移的距离为3,求△ABC与△A′B′C′重叠部分的面积. (2)若平移的距离为x(0≤x≤4),求△ABC与△A′B′C′重叠部分的面积y,写出y与x的关系式. 分析:(1)∵BC=4,AC=4 ∴△ABC是等腰直角三角形,易得△BDC′也是等腰直角三角形且BC′=1 (2)∵平移的距离为x,∴BC′=4-x 解:(1)∵CC′=3,CB=4且AC=BC ∴BC′=C′D=1 ∴S△BDC`=11= (2)∵CC′=x,∴BC′=4-x ∵AC=BC=4 ∴DC′=4-x ∴S△BDC`=(4-x)(4-x)=x2-4x+8 五、归纳小结(学生归纳,老师点评) 本节课应掌握: 1.中心对称及对称中心的概念; 2.关于中心的对称点的概念及其运用. 六、布置作业 1.教材P73 练习1. 2.选作课时作业设计. 第一课时作业设计 一、选择题 1.在英文字母VWXYZ中,是中心对称的英文字母的个数有( )个. A.1 B.2 C.3 D.4 2.下面的图案中,是中心对称图形的个数有( )个 A.1 B.2 C.3 D.4 3.如图,把一张长方形ABCD的纸片,沿EF折叠后,ED′与BC的交点为G,点D、C分别落在D′、C′的位置上,若∠EFG=55,则∠1=( ) A.55 B.125 C.70 D.110 二、填空题 1.关于某一点成中心对称的两个图形,对称点连线必通过_________. 2.把一个图形绕着某一个点旋转180,如果它能够与另一个图形重合,那么就说这两个图形是_________图形. 3.用两个全等的直角非等腰三角形可以拼成下面图形中的哪几种:_______(填序号) (1)长方形;(2)菱形;(3)正方形;(4)一般的平行四边形;(5)等腰三角形;(6)梯形. 三、综合提高题 1.仔细观察所列的26个英文字母,将相应的字母填入下表中适当的空格内. A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 对称 形式 轴对称 旋转 对称 中心 对称 只有一条对称轴 有两条对称轴 2.如图,在正方形ABCD中,作出关于P点的中心对称图形,并写出作法. 3.如图,是由两个半圆组成的图形,已知点B是AC的中点,画出此图形关于点B成中心对称的图形. 答案: 一、1.B 2.D 3.D 二、1.这一点(对称中心) 2.中心对称 3.(1)(4)(5) 三、1.略 2.作法:(1)延长CB且BC′=BC; (2)延长DB且BD′=DB,延长AB且使BA′=BA; (3)连结A′D′、D′C′、C′B 则四边形A′BC′D′即为所求作的中心对称图形,如图所示. 3.略. 23.2 中心对称(2) 第二课时 教学内容 1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分. 2.关于中心对称的两个图形是全等图形. 教学目标 理解关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;理解关于中心对称的两个图形是全等图形;掌握这两个性质的运用. 复
展开阅读全文
相关搜索
温馨提示:
taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。

当前位置:首页 > 教育专区 > 教案示例


本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁