三角函数高考试题精编(含详细规范标准答案).doc

举报
资源描述
三角函数高考试题精选 一.选择题(共18小题) 1.(2017•山东)函数y=sin2x+cos2x的最小正周期为(  ) A. B. C.π D.2π  2.(2017•天津)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f()=2,f()=0,且f(x)的最小正周期大于2π,则(  ) A.ω=,φ= B.ω=,φ=﹣ C.ω=,φ=﹣ D.ω=,φ=  3.(2017•新课标Ⅱ)函数f(x)=sin(2x+)的最小正周期为(  ) A.4π B.2π C.π D. 4.(2017•新课标Ⅲ)设函数f(x)=cos(x+),则下列结论错误的是(  ) A.f(x)的一个周期为﹣2π B.y=f(x)的图象关于直线x=对称 C.f(x+π)的一个零点为x= D.f(x)在(,π)单调递减  5.(2017•新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是(  ) A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2 B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2 C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2 D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2 6.(2017•新课标Ⅲ)函数f(x)=sin(x+)+cos(x﹣)的最大值为(  ) A. B.1 C. D. 7.(2016•上海)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x﹣)=sin(ax+b),则满足条件的有序实数对(a,b)的对数为(  ) A.1 B.2 C.3 D.4  8.(2016•新课标Ⅲ)若tanα=,则cos2α+2sin2α=(  ) A. B. C.1 D. 9.(2016•新课标Ⅲ)若tanθ=﹣,则cos2θ=(  ) A.﹣ B.﹣ C. D. 10.(2016•浙江)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期(  ) A.与b有关,且与c有关 B.与b有关,但与c无关 C.与b无关,且与c无关 D.与b无关,但与c有关 11.(2016•新课标Ⅱ)若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为(  ) A.x=﹣(k∈Z) B.x=+(k∈Z) C.x=﹣(k∈Z) D.x=+(k∈Z)  12.(2016•新课标Ⅰ)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为(  ) A.11 B.9 C.7 D.5 13.(2016•四川)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x的图象上所有的点(  ) A.向左平行移动个单位长度 B.向右平行移动个单位长度 C.向左平行移动个单位长度 D.向右平行移动个单位长度 14.(2016•新课标Ⅰ)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为(  ) A.y=2sin(2x+) B.y=2sin(2x+) C.y=2sin(2x﹣) D.y=2sin(2x﹣) 15.(2016•北京)将函数y=sin(2x﹣)图象上的点P(,t)向左平移s(s>0)个单位长度得到点P′,若P′位于函数y=sin2x的图象上,则(  ) A.t=,s的最小值为 B.t=,s的最小值为 C.t=,s的最小值为 D.t=,s的最小值为 16.(2016•四川)为了得到函数y=sin(x+)的图象,只需把函数y=sinx的图象上所有的点(  ) A.向左平行移动个单位长度 B.向右平行移动个单位长度 C.向上平行移动个单位长度 D.向下平行移动个单位长度 17.(2016•新课标Ⅱ)函数y=Asin(ωx+φ)的部分图象如图所示,则(  ) A.y=2sin(2x﹣) B.y=2sin(2x﹣) C.y=2sin(x+) D.y=2sin(x+) 18.(2016•新课标Ⅱ)函数f(x)=cos2x+6cos(﹣x)的最大值为(  ) A.4 B.5 C.6 D.7 二.填空题(共9小题) 19.(2017•北京)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则sinβ=  .  20.(2017•上海)设a1、a2∈R,且+=2,则|10π﹣α1﹣α2|的最小值为  . 21.(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是  . 22.(2017•新课标Ⅱ)函数f(x)=2cosx+sinx的最大值为  . 23.(2016•上海)设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x﹣)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为  .  24.(2016•江苏)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是  . 25.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=2sinx的图象至少向右平移  个单位长度得到.  26.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移  个单位长度得到. 27.(2016•江苏)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是  . 三.解答题(共3小题) 28.(2017•北京)已知函数f(x)=cos(2x﹣)﹣2sinxcosx. (I)求f(x)的最小正周期; (II)求证:当x∈[﹣,]时,f(x)≥﹣. 29.(2016•山东)设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2. (Ⅰ)求f(x)的单调递增区间; (Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值. 30.(2016•北京)已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π. (1)求ω的值; (2)求f(x)的单调递增区间.   三角函数2017高考试题精选(一) 参考答案与试题解析   一.选择题(共18小题) 1.(2017•山东)函数y=sin2x+cos2x的最小正周期为(  ) A. B. C.π D.2π 【解答】解:∵函数y=sin2x+cos2x=2sin(2x+), ∵ω=2, ∴T=π, 故选:C   2.(2017•天津)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f()=2,f()=0,且f(x)的最小正周期大于2π,则(  ) A.ω=,φ= B.ω=,φ=﹣ C.ω=,φ=﹣ D.ω=,φ= 【解答】解:由f(x)的最小正周期大于2π,得, 又f()=2,f()=0,得, ∴T=3π,则,即. ∴f(x)=2sin(ωx+φ)=2sin(x+φ), 由f()=,得sin(φ+)=1. ∴φ+=,k∈Z. 取k=0,得φ=<π. ∴,φ=. 故选:A.   3.(2017•新课标Ⅱ)函数f(x)=sin(2x+)的最小正周期为(  ) A.4π B.2π C.π D. 【解答】解:函数f(x)=sin(2x+)的最小正周期为:=π. 故选:C.   4.(2017•新课标Ⅲ)设函数f(x)=cos(x+),则下列结论错误的是(  ) A.f(x)的一个周期为﹣2π B.y=f(x)的图象关于直线x=对称 C.f(x+π)的一个零点为x= D.f(x)在(,π)单调递减 【解答】解:A.函数的周期为2kπ,当k=﹣1时,周期T=﹣2π,故A正确, B.当x=时,cos(x+)=cos(+)=cos=cos3π=﹣1为最小值,此时y=f(x)的图象关于直线x=对称,故B正确, C当x=时,f(+π)=cos(+π+)=cos=0,则f(x+π)的一个零点为x=,故C正确, D.当<x<π时,<x+<,此时函数f(x)不是单调函数,故D错误, 故选:D   5.(2017•新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是(  ) A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2 B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2 C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2 D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2 【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2, 故选:D.   6.(2017•新课标Ⅲ)函数f(x)=sin(x+)+cos(x﹣)的最大值为(  ) A. B.1 C. D. 【解答】解:函数f(x)=sin(x+)+cos(x﹣)=sin(x+)+cos(﹣x+)=sin(x+)+sin(x+) =sin(x+). 故选:A.   7.(2016•上海)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x﹣)=sin(ax+b),则满足条件的有序实数对(a,b)的对数为(  ) A.1 B.2 C.3 D.4 【解答】解:∵对于任意实数x都有sin(3x﹣)=sin(ax+b), 则函数的周期相同,若a=3, 此时sin(3x﹣)=sin(3x+b), 此时b=﹣+2π=, 若a=﹣3,则方程等价为sin(3x﹣)=sin(﹣3x+b)=﹣sin(3x﹣b)=sin(3x﹣b+π), 则﹣=﹣b+π,则b=, 综上满足条件的有序实数组(a,b)为(3,),(﹣3,), 共有2组, 故选:B.   8.(2016•新课标Ⅲ)若tanα=,则cos2α+2sin2α=(  ) A. B. C.1 D. 【解答】解:∵tanα=, ∴cos2α+2sin2α====. 故选:A.   9.(2016•新课标Ⅲ)若tanθ=﹣,则cos2θ=(  ) A.﹣ B.﹣ C. D. 【解答】解:由tanθ=﹣,得cos2θ=cos2θ﹣sin2θ ==. 故选:D.   10.(2016•浙江)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期(  ) A.与b有关,且与c有关 B.与b有关,但与c无关 C.与b无关,且与c无关 D.与b无关,但与c有关 【解答】解:∵设函数f(x)=sin2x+bsinx+c, ∴f(x)图象的纵坐标增加了c,横坐标不变,故周期与c无关, 当b=0时,f(x)=sin2x+bsinx+c=﹣cos2x++c的最小正周期为T==π, 当b≠0时,f(x)=﹣cos2x+bsinx++c, ∵y=cos2x的最小正周期为π,y=bsinx的最小正周期为2π, ∴f(x)的最小正周期为2π, 故f(x)的最小正周期与b有关, 故选:B   11.(2016•新课标Ⅱ)若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为(  ) A.x=﹣(k∈Z) B.x=+(k∈Z) C.x=﹣(k∈Z) D.x=+(k∈Z) 【解答】解:将函数y=2sin2x的图象向左平移个单位长度,得到y=2sin2(x+)=2sin(2x+), 由2x+=kπ+(k∈Z)得:x=+(k∈Z), 即平移后的图象的对称轴方程为x=+(k∈Z), 故选:B.   12.(2016•新课标Ⅰ)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为(  ) A.11 B.9 C.7 D.5 【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴, ∴,即,(n∈N) 即ω=2n+1,(n∈N) 即ω为正奇数, ∵f(x)在(,)上单调,则﹣=≤, 即T=≥,解得:ω≤12, 当ω=11时,﹣+φ=kπ,k∈Z, ∵|φ|≤, ∴φ=﹣, 此时f(x)在(,)不单调,不满足题意; 当ω=9时,﹣+φ=kπ,k∈Z, ∵|φ|≤, ∴φ=, 此时f(x)在(,)单调,满足题意; 故ω的最大值为9, 故选:B   13.(2016•四川)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x的图象上所有的点(  ) A.向左平行移动个单位长度 B.向右平行移动个单位长度 C.向左平行移动个单位长度 D.向右平行移动个单位长度 【解答】解:把函数y=sin2x的图象向右平移个单位长度,可得函数y=sin2(x﹣)=sin(2x﹣)的图象, 故选:D.   14.(2016•新课标Ⅰ)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为(  ) A.y=2sin(2x+) B.y=2sin(2x+) C.y=2sin(2x﹣) D.y=2sin(2x﹣) 【解答】解:函数y=2sin(2x+)的周期为T==π, 由题意即为函数y=2sin(2x+)的图象向右平移个单位, 可得图象对应的函数为y=2sin[2(x﹣)+], 即有y=2sin(2x﹣). 故选:D.   15.(2016•北京)将函数y=sin(2x﹣)图象上的点P(,t)向左平移s(s>0)个单位长度得到点P′,若P′位于函数y=sin2x的图象上,则(  ) A.t=,s的最小值为 B.t=,s的最小值为 C.t=,s的最小值为 D.t=,s的最小值为 【解答】解:将x=代入得:t=sin=, 将函数y=sin(2x﹣)图象上的点P向左平移s个单位, 得到P′(+s,)点, 若P′位于函数y=sin2x的图象上, 则sin(+2s)=cos2s=, 则2s=+2kπ,k∈Z, 则s=+kπ,k∈Z, 由s>0得:当k=0时,s的最小值为, 故选:A.   16.(2016•四川)为了得到函数y=sin(x+)的图象,只需把函数y=sinx的图象上所有的点(  ) A.向左平行移动个单位长度 B.向右平行移动个单位长度 C.向上平行移动个单位长度 D.向下平行移动个单位长度 【解答】解:由已知中平移前函数解析式为y=sinx, 平移后函数解析式为:y=sin(x+), 可得平移量为向左平行移动个单位长度, 故选:A   17.(2016•新课标Ⅱ)函数y=Asin(ωx+φ)的部分图象如图所示,则(  ) A.y=2sin(2x﹣) B.y=2sin(2x﹣) C.y=2sin(x+) D.y=2sin(x+) 【解答】解:由图可得:函数的最大值为2,最小值为﹣2,故A=2, =,故T=π,ω=2, 故y=2sin(2x+φ), 将(,2)代入可得:2sin(+φ)=2, 则φ=﹣满足要求, 故y=2sin(2x﹣), 故选:A.   18.(2016•新课标Ⅱ)函数f(x)=cos2x+6cos(﹣x)的最大值为(  ) A.4 B.5 C.6 D.7 【解答】解:函数f(x)=cos2x+6cos(﹣x) =1﹣2sin2x+6sinx, 令t=sinx(﹣1≤t≤1), 可得函数y=﹣2t2+6t+1 =﹣2(t﹣)2+, 由∉[﹣1,1],可得函数在[﹣1,1]递增, 即有t=1即x=2kπ+,k∈Z时,函数取得最大值5. 故选:B.   二.填空题(共9小题) 19.(2017•北京)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则sinβ=  . 【解答】解:∵在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称, ∴α+β=π+2kπ,k∈Z, ∵sinα=, ∴sinβ=sin(π+2kπ﹣α)=sinα=. 故答案为:.   20.(2017•上海)设a1、a2∈R,且+=2,则|10π﹣α1﹣α2|的最小值为  . 【解答】解:根据三角函数的性质,可知sinα1,sin2α2的范围在[﹣1,1], 要使+=2, ∴sinα1=﹣1,sin2α2=﹣1. 则:,k1∈Z. ,即,k2∈Z. 那么:α1+α2=(2k1+k2)π,k1、k2∈Z. ∴|10π﹣α1﹣α2|=|10π﹣(2k1+k2)π|的最小值为. 故答案为:.   21.(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是 1 . 【解答】解:f(x)=sin2x+cosx﹣=1﹣cos2x+cosx﹣, 令cosx=t且t∈[0,1], 则y=﹣t2+t+=﹣(t﹣)2+1, 当t=时,f(t)max=1, 即f(x)的最大值为1, 故答案为:1   22.(2017•新课标Ⅱ)函数f(x)=2cosx+sinx的最大值为  . 【解答】解:函数f(x)=2cosx+sinx=(cosx+sinx)=sin(x+θ),其中tanθ=2, 可知函数的最大值为:. 故答案为:.   23.(2016•上海)设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x﹣)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为 4 . 【解答】解:∵对于任意实数x都有2sin(3x﹣)=asin(bx+c), ∴必有|a|=2, 若a=2,则方程等价为sin(3x﹣)=sin(bx+c), 则函数的周期相同,若b=3,此时C=, 若b=﹣3,则C=, 若a=﹣2,则方程等价为sin(3x﹣)=﹣sin(bx+c)=sin(﹣bx﹣c), 若b=﹣3,则C=,若b=3,则C=, 综上满足条件的有序实数组(a,b,c)为(2,3,),(2,﹣3,),(﹣2,﹣3,),(﹣2,3,), 共有4组, 故答案为:4.   24.(2016•江苏)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是 7 . 【解答】解:画出函数y=sin2x与y=cosx在区间[0,3π]上的图象如下: 由图可知,共7个交点. 故答案为:7.   25.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=2sinx的图象至少向右平移  个单位长度得到. 【解答】解:∵y=sinx﹣cosx=2sin(x﹣), 令f(x)=2sinx, 则f(x﹣φ)=2in(x﹣φ)(φ>0), 依题意可得2sin(x﹣φ)=2sin(x﹣), 故﹣φ=2kπ﹣(k∈Z), 即φ=﹣2kπ+(k∈Z), 当k=0时,正数φmin=, 故答案为:.   26.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移  个单位长度得到. 【解答】解:∵y=f(x)=sinx+cosx=2sin(x+),y=sinx﹣cosx=2sin(x﹣), ∴f(x﹣φ)=2sin(x+﹣φ)(φ>0), 令2sin(x+﹣φ)=2sin(x﹣), 则﹣φ=2kπ﹣(k∈Z), 即φ=﹣2kπ(k∈Z), 当k=0时,正数φmin=, 故答案为:.   27.(2016•江苏)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是 8 . 【解答】解:由sinA=sin(π﹣A)=sin(B+C)=sinBcosC+cosBsinC,sinA=2sinBsinC, 可得sinBcosC+cosBsinC=2sinBsinC,① 由三角形ABC为锐角三角形,则cosB>0,cosC>0, 在①式两侧同时除以cosBcosC可得tanB+tanC=2tanBtanC, 又tanA=﹣tan(π﹣A)=﹣tan(B+C)=﹣②, 则tanAtanBtanC=﹣•tanBtanC, 由tanB+tanC=2tanBtanC可得tanAtanBtanC=﹣, 令tanBtanC=t,由A,B,C为锐角可得tanA>0,tanB>0,tanC>0, 由②式得1﹣tanBtanC<0,解得t>1, tanAtanBtanC=﹣=﹣, =()2﹣,由t>1得,﹣≤<0, 因此tanAtanBtanC的最小值为8, 另解:由已知条件sinA=2sinBsinc,sin(B十C)=2sinBsinC, sinBcosC十cosBsinC=2sinBcosC, 两边同除以cosBcosC,tanB十tanC=2tanBtanC, ∵﹣tanA=tan(B十C)=, ∴tanAtanBtanC=tanA十tanB十tanC, ∴tanAtanBtanC=tanA十2tanBtanC≥2, 令tanAtanBtanC=x>0, 即x≥2,即x≥8,或x≤0(舍去),所以x的最小值为8. 当且仅当t=2时取到等号,此时tanB+tanC=4,tanBtanC=2, 解得tanB=2+,tanC=2﹣,tanA=4,(或tanB,tanC互换),此时A,B,C均为锐角.   三.解答题(共3小题) 28.(2017•北京)已知函数f(x)=cos(2x﹣)﹣2sinxcosx. (I)求f(x)的最小正周期; (II)求证:当x∈[﹣,]时,f(x)≥﹣. 【解答】解:(Ⅰ)f(x)=cos(2x﹣)﹣2sinxcosx, =(co2x+sin2x)﹣sin2x, =cos2x+sin2x, =sin(2x+), ∴T==π, ∴f(x)的最小正周期为π, (Ⅱ)∵x∈[﹣,], ∴2x+∈[﹣,], ∴﹣≤sin(2x+)≤1, ∴f(x)≥﹣   29.(2016•山东)设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2. (Ⅰ)求f(x)的单调递增区间; (Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值. 【解答】解:(Ⅰ)∵f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2 =2sin2x﹣1+sin2x=2•﹣1+sin2x =sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1, 令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+, 可得函数的增区间为[kπ﹣,kπ+],k∈Z. (Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=2sin(x﹣)+﹣1的图象; 再把得到的图象向左平移个单位,得到函数y=g(x)=2sinx+﹣1的图象, ∴g()=2sin+﹣1=.   30.(2016•北京)已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π. (1)求ω的值; (2)求f(x)的单调递增区间. 【解答】解:(1)f(x)=2sinωxcosωx+cos2ωx =sin2ωx+cos2ωx==. 由T=,得ω=1; (2)由(1)得,f(x)=. 再由,得. ∴f(x)的单调递增区间为[](k∈Z).  
展开阅读全文
相关搜索
温馨提示:
taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。

当前位置:首页 > 教育专区 > 教案示例


本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁