《提能拔高限时训练31两条直线的位置关系.doc》由会员分享,可在线阅读,更多相关《提能拔高限时训练31两条直线的位置关系.doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、提能拔高限时训练31 两条直线的位置关系一、选择题1.原点到直线x+2y-5=0的距离为( ) B. D.解析:由题意,得原点到直线x+2y-5=0的距离等于,选D.答案:D2.数列an,那么“对任意的nN*,点Pn(n,an)都在直线2x-y+1=0上是“an为等差数列的( ) 解析:点Pn(n,an)在直线2x-y+1=0上,2n-an+1=0,即an=2n+1,an+1-an=2.数列an是等差数列;假设数列an是等差数列,设公差为d,那么an=nd+a1-d,即点Pn(n,an)在直线dx-y+(a1-d)=0上,不一定是在直线2x-y+1=0上,“对于任意的nN*,点Pn(n,an)
2、都在直线2x-y+1=0上是“数列an为等差数列的充分不必要条件,故正确答案是A.答案:A3.直线y=2与直线x+y-2=0的夹角是( )A. B. C. D. 解析:此题考查两直线的夹角.如下图,由作图法易得,即为所求夹角,tan=1,应选A.答案:A4.假设直线ax+y-1=0与直线4x+(a-3)y-2=0垂直,那么实数a的值等于( ) B.4 C. D.解析:直线ax+y-1=0的斜率k1=-a,直线4x+(a-3)y-2=0的斜率.因为两直线垂直,所以.求得,应选C.答案:C5.等腰三角形两腰所在直线的方程分别为x+y-2=0和x-7y-4=0,原点在等腰三角形的底边上,那么底边所在
3、直线的斜率为( ) B.2 C. D.解析:设底边所在直线的斜率为k,依题意,直线x+y-2=0到底边所在直线的角等于底边所在直线到直线x-7y-4=0的角,因此有,由此解得k=或k=3,结合图形分析可知k0,因此有k=3,选A.答案:A6.点A(1,2),B(3,1),那么线段AB的垂直平分线的方程为( )A.4x+2y=5 B.4x-2y=5C.x+2y=5 D.x-2y=5解析:,即(2,).AB的垂直平分线的斜率为垂直平分线的方程为应选B.答案:B7.如果直线(2m2+m-3)x+(m2-m)y=4m-1与直线2x-3y=5互相平行,那么实数m的值为( ) B.-1 C.1或 D.解析
4、:两直线平行,可得,解得m=1或m=.经检验m=.答案:D解析:由于直线的倾斜角=90时,直线垂直于x轴,此时无斜率,故排除A、C.而两直线平行是它们在y轴上截距不相等的既不充分也不必要条件.故D错,正确的选项是B.答案:B9.在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有( ) 解析:此题考查数形结合能力.由图可知:符合条件的直线有y=3,易知,连结AB交y=3于点M,那么y=3关于直线AB对称的直线MN也满足题中条件,故有2条,选B.答案:B10.“m=是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0互相垂直的( ) 解析:当m=时
5、,两直线互相垂直;当m=-2时,两直线也互相垂直.答案:B二、填空题1:2x+my+1=0与直线l2:y=3x-1平行,那么m=_.解析:由题意,知,假设l1l2,那么.答案:12.设直线l经过点A(-1,1),那么当点B(2,-1)与直线l的距离最远时,直线l的方程为_.解析:当lAB时,点B与直线l的距离最远.又l过点A(-1,1),由点斜式,得y-1=(x+1),整理,得3x-2y+5=0.答案:3x-2y+5=013.ABC的面积为3,且A(1,1),B(3,6),那么点C所在直线的方程为_.解析:AB所在直线的方程为5x-2y-3=0,且|AB|=.点C在与AB平行且距离直线AB为的
6、直线l上,设l:5x-2y+m=0,那么,解得m=3或m=-9.因此,直线l:5x-2y+3=0或5x-2y-9=0.答案:5x-2y+3=0或5x-2y-9=01:2x-y+4=0与直线l2平行,且l2与抛物线y=x2相切,那么直线l1、l2间的距离等于_.解析:设切点坐标是(x0,x02),那么有2x0=2,x0=1,即切点坐标是(1,1),直线l2的方程是y-1=2(x-1),即2x-y-1=0,故直线l1、l2间的距离等于.答案:三、解答题15.直线l经过点P(-2,1),且点A(-1,-2)到l的距离等于1,求直线l的方程.解:,即|k+3|=解得k=,故l的方程为y=(x+2)+1
7、,即4x+3y+5=0.综上所述,直线l的方程为x=-2或4x+3y+5=0.16.直线l经过点(1,0),且被两平行直线3x+y-6=0和3x+y+3=0所截得的线段长为9,求直线l的方程.解:设过点(1,0)的直线l与两平行直线分别交于A、B两点,那么|AB|=9.作AC垂直于两平行直线于A、C两点,那么.设AB与两平行直线的夹角为,那么tan=.设直线l的斜率为k,由得,所求直线的方程为4x+3y-4=0.当斜率k不存在时,x=1也满足题设条件.故直线l的方程是4x+3y-4=0或x=1.数学参考例题 志鸿优化系列丛书【例1】直线l被两直线l1:4x+y+6=0,l2:3x-5y-6=0
8、截得的线段的中点恰好是坐标原点,求直线l的方程.解法一:由题设知l经过坐标原点,解得l与l1交点的横坐标x1=.由解得l与l2交点的横坐标.由x1+x2=,解得.故直线l的方程为.解法二:设直线l与l1、l2的交点分别是A、B,设A(x0,y0).A、B关于原点对称,B(-x0,-y0).又A、B分别在l1、l2上, +,得x0+6y0=0,即A、B都在直线x+6y=0上,直线l的方程是x+6y=0.【例2】求经过直线3x-2y+1=0和x+3y+4=0的交点,且垂直于直线x+3y+4=0的直线l的方程.解:方法一:联立得交点(-1,-1),又知l的斜率为3,l的方程为y+1=3(x+1),整理得3x-y+2=0.方法二:由题知kl=3,可设直线l的方程3x-y+c=0,由可求l过交点(-1,-1),-3+1+c=0,c=2.故l的方程为3x-y+2=0.方法三:设直线l的方程(3x-2y+1)+(x+3y+4)=0,即(3+)x+(3-2)y+4+1=0,直线l的斜率为3,解得.代回得所求直线l的方程为3x-y+2=0.