2019年度江苏地区泰州市中考数学试卷及标准答案.doc

举报
资源描述
,. 2019年江苏省泰州市中考数学试卷 (考试时间120分钟,满分150分) 请注意:1.本试卷选择题和非选择题两个部分, 2.所有试题的答案均填写在答题卡上,答案写在试卷上无效, 3.作图必须用2B铅笔,并请加黑加粗。 第一部分 选择题(共18分) 一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上) 1.﹣1的相反数是(  ) A.1 B.﹣1 C.0 D.1 2.下列图形中的轴对称图形是(  ) 3.方程2x2+6x-1=0的两根为x1、x2,则x1+x2等于(  ) A.-6 B.6 C.-3 D. 3 4.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如下表(  ) 若抛掷硬币的次数为1000,则“下面朝上”的频数最接近 A.200 B.300 C.500 D.800 5.如图所示的网格由边长相同的小正方形组成,点A、B、C、D、E、F、G在小正方形的顶点上,则△ABC的重心是(  ) A.点D B.点E C.点F D.点G 6.若2a-3b=-1,则代数式4a2-6ab+3b的值为(  ) A.-1 B.1 C.2 D.3 第二部分 非选择题(共132分) 二、填空题(本大题共10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应位置上.) 7.计算:(π-1)0=   . 8.若分式有意义,则x的取值范围是   . 9.2019年5月28日,我国“科学”号远洋科考船在最深约为11000m的马里亚纳海沟南侧发现了近10片珊瑚林,将11000用科学记数法表示为   . 10.不等式组的解集为   . 11.八边形的内角和为   . 12.命题“三角形的三个内角中至少有两个锐角”是   (填“真命题”或“假命题”). 13.根据某商场2018年四个季度的营业额绘制成如图所示的扇形统计图,其中二季度的营业额为1000万元,则该商场全年的营业额为   万元. 14.若关于x的方程x2+2x+m=0有两个不相等的实数根,则m的取值范围是   . 15.如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm,则该莱洛三角形的周长为   cm. 16.如图,⊙O的半径为5,点P在⊙O上,点A在⊙O内,且AP=3,过点A作AP的垂线交于⊙O点B、C.设PB=x,PC=y,则y与x的函数表达式为   . 三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本题满分12分)(1)计算:(-); (2)解方程: 18.(本题满分8分) PM2.5是指空气中直径小于或等于2.5PM的颗粒物,它对人体健康和大气环境造成不良影响.下表是根据(全国城市空气质量报告)中的部分数据制作的统计表,根据统计表回答下列问题: 2017年、2018年7~12月全国338个地区及以上城市平均浓度统计表: (单位:pm/m2) 月份 年份 7 8 9 10 11 12 2017年 27 24 30 38 51 65 2018年 23 24 25 36 49 53 (1)2018年7~12月PM2.5平均浓度的中位数为   pm/m2; (2)“扇形统计图”和“折线统计图”中,更能直观地反映2018年7~12月PM2.5平均浓度变化过程和趋势的统计图是  ; (3)某同学观察统计表后说:“2018年7~12月与2017年同期相比,空气质量有所改善”。请你用一句话说明该同学得出这个结论的理由。 19.(本题满分8分) 小明代表学校参加“我和我的祖国”主题宣传教育活动,该活动分为两个阶段,第一阶段有“歌曲演唱”、“ 书法展示”、“器乐独奏”3个项目(依次用A、B、C表示),第二阶段有“故事演讲”、“诗歌朗诵”2个项目(依次用D、E表示),参加人员在每个阶段各随机抽取一个项目完成.用画树状图或列表的方法列出小明参加项目的所有等可能的结果,并求小明恰好抽中B、D两个项目的概率. C A B 第20题图 20.(本题满分8分)如图, △ABC中,∠C=900, AC=4, BC=8, (1)用直尺和圆规作AB的垂直平分线;(保留作图痕迹,不要求写作法) (2)若(1)中所作的垂直平分线交BC于点D,求BD的长. 21.(本题满分10分)某体育看台侧面的示意图如图所示,观众区AC的坡度i=1∶2,顶端C离水平地面AB的高度为10m,从顶棚的D处看E处的仰角α=18030′,竖直的立杆上C、D两点间的距离为4m,E处到观众区底端A处的水平距离AF为3m,求: (1)观众区的水平宽度AB; (2)顶棚的E处离地面的高度EF. (sin18030′≈0.32, tan18030′≈0.33,结果精确到0.1m) 22.(本题满分10分) y x A O C B 如图,在平面直角坐标系xoy 中,二次函数图像的顶点坐标为(4,-3),该图像与x轴相交于点A、B,与y轴相交于点C,其中点A 的横坐标为1. (1)求该二次函数的表达式; (2)求tan∠ABC. 23.(本题满分10分) 小李经营一家水果店,某日到水果批发市场批发一种水果.经了解,一次性批发这种水果不得少于100kg,超过300kg时,所有这种水果的批发单价均为3元/kg.图中折线表示批发单价y(元/kg)与质量x(kg)的函数关系. (1)求图中线段AB所在直线的函数表达式; (2)小李用800元一次可以批发这种水果的质量是多少? 24.(本题满分10分) E D C B A O 如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为弧AC的中点,过点D作DE∥AC,交BC的延长线于点E. (1)判断DE与⊙O的位置关系,并说明理由; (2)若⊙O的半径为5,AB=8,求CE的长. 25.(本题满分12分) P G F D C B A E 第25题图 如图,线段AB=8,射线BG⊥AB,P为射线BG上一点,以AP为边作正方形APCD ,且点C、D与点B在AP 两侧,在线段DP上取一点E,使∠EAP=∠BAP.直线CE与线段AB相交于点F(点F与点A、B不重合). (1)求证:△AEP≌△CEP; (2)判断CF与AB的位置关系,并说明理由; (3)求△AEF的周长. 26.(本题满分14分) 已知一次函数y1=kx+n(n <0)和反比例函数y2=(m>0, x>0), (1)如图1,若n=-2,且函数y1、y2的图像都经过点A(3,4). ①求m、k的值; ②直接写出当y1>y2时x的范围; (2)如图2,过点P(1,0)作y轴的平行线l与函数y2的图像相交于点B,与反比例函数y3= (x>0)的图像相交于点C. ①若k=2, 直线l与函数y1的图像相交于点D,当点B、C、D中的一点到另外两点的距离相等时, 求m-n的值; ②过点B作x轴的平行线与函数y1的图像相交与点E,当m-n的值取不大于1的任意实数时,点B、C间的距离与点B、E间的距离之和d始终是一个定值,求此时k的值及定值d. 2019年江苏省泰州市中考数学试卷 参考答案 一、选择题 1.D. 2. B. 3. C. 4. C. 5. A. 6.B. 二、填空题 7.1. 8. x≠0.5 9. 1.1104. 10.x<﹣3. 11.1080. 12. 真命题. 13.5000. 14.m<1. 15.6π. 16. y= 三、解答题 17.(1)3 (2) x =4 18.(1)36. (2)折线统计图, (3)略. 19.. 20.(1)略; (2) 5. 21.(1)AB=20m; (2) EF=21.6m. 22.(1)y= (2) . 23.(1)y=﹣0.01x+6 (100≤x≤300). (2)200kg. 24.(1) DE为⊙O的切线, 理由:连接OD, ∵AC为⊙O的直径,D为弧AC的中点, ∴弧AD=弧CD, ∴∠AOD=∠COD=90, 又∵DE∥AC, ∴∠EDO=∠AOD=90, ∴DE为⊙O的切线. (2)解:∵DE∥AC, ∴∠EDO=∠ACD, ∵∠ACD=∠ABD, ∵∠DCE=∠BAD, ∴△DCE∽△BAD, ∴ ∵半径为5,∴AC=10, ∵ D为弧AC的中点, ∴AD=CD=5 ∴ ∴CE= P G F D C B A E 第25题图 25.(1)证明:∵四边形APCD正方形, N ∴DP平分∠APC, PC=PA, ∴∠APD=∠CPD=45, ∴△AEP≌△CEP. (2) CF⊥AB. 理由如下: ∵△AEP≌△CEP, M ∴∠EAP=∠ECP, ∵∠EAP=∠BAP. ∴∠BAP=∠FCP, ∵∠FCP+∠CMP=90,∠AMF=∠CMP, ∴∠AMF+∠PAB=90, ∴∠AFM=90, ∴CF⊥AB. (3)过点 C 作CN⊥PB.可证得△PCN≌△APB, ∴ CN=PB=BF, PN=AB, ∵△AEP≌△CEP, ∴AE=CE, ∴AE+EF+AF =CE+EF+AF =BN+AF =PN+PB+AF =AB+CN+AF =AB+BF+AF =2 AB =16. 26.(1)①∵y2= (m>0, x>0),过点A(3,4). ∴4= ∴m=12. 又∵点A (3,4)y1=kx+n的图象上,且n=-2, ∴4=3k-2, ∴k=2. ②由图像可知当x>3时,y1>y2. (2)①∵直线l过点P(1,0), ∴D(1,2+ n),B(1,m),C(1, n), 又∵点B、C、D中的一点到另外两点的距离相等, ∴BD=BC, 或 BD=DC; ∴2+ n﹣m=m﹣n; 或 m﹣(2+ n)=2+ n﹣n; ∴m﹣n=1 或 m﹣n=4. ②由题意可知,B(1,m),C(1, n), 当y1=m时,kx+n=m, ∴x= 即点E的横坐标为 ∴d=BC+BE= = ∵m-n的值取不大于1的任意实数时, d始终是一个定值, ∴ ∴k=1,从而d=1.
展开阅读全文
相关搜索
温馨提示:
taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。

当前位置:首页 > 教育专区 > 教案示例


本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁