《(整理版)数学必修1函数概念及性质(知识点总结).doc》由会员分享,可在线阅读,更多相关《(整理版)数学必修1函数概念及性质(知识点总结).doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、数学必修1函数概念及性质知识点总结 一函数的有关概念1函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数记作: y=f(x),xA其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合f(x)| xA 叫做函数的值域注意:如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域即是指能使这个式子有意义的实数的集合; 函数的定义域、值域要写成集合或区间的形式定义域补充能使函数式有意义的实数x的集合称为函数的定义域
2、,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些根本函数通过四那么运算结合而成的.那么,它的定义域是使各局部都有意义的x的值组成的集合.6指数为零底不可以等于零 (6)实际问题中的函数的定义域还要保证实际问题有意义.(又注意:求出不等式组的解集即为函数的定义域。)2 构成函数的三要素:定义域、对应关系和值域再注意:1构成函数三个要素是定义域、对应关系和值域由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称
3、这两个函数相等或为同一函数2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:表达式相同;定义域一致 (两点必须同时具备)(见课本21页相关例2)值域补充(1)、函数的值域取决于定义域和对应法那么,不管采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的根底. (3).求函数值域的常用方法有:直接法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等.3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数 y=f(x) , (xA)中的
4、x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x A)的图象C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . 即记为C= P(x,y) | y= f(x) , xA 图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的假设干条曲线或离散点组成.(2) 画法A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来.B、图象变换法请参考必
5、修4三角函数常用变换方法有三种,即平移变换、伸缩变换和对称变换 (3)作用:1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。 发现解题中的错误。4快去了解区间的概念1区间的分类:开区间、闭区间、半开半闭区间;2无穷区间;3区间的数轴表示5什么叫做映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法那么f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f:AB给定一个集合A到B的映射,如果aA,bB.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的
6、原象说明:函数是一种特殊的映射,映射是一种特殊的对应,集合A、B及对应法那么f是确定的;对应法那么有“方向性,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;对于映射f:AB来说,那么应满足:集合A中的每一个元素,在集合B中都有象,并且象是唯一的;集合A中不同的元素,在集合B中对应的象可以是同一个;不要求集合B中的每一个元素在集合A中都有原象。6 常用的函数表示法及各自的优点: 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据; 解析法:必须注明函数的定义域; 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察
7、函数的特征; 列表法:选取的自变量要有代表性,应能反映定义域的特征注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值补充一:分段函数 参见课本P24-25 在定义域的不同局部上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各局部的自变量的取值情况1分段函数是一个函数,不要把它误认为是几个函数;2分段函数的定义域是各段定义域的并集,值域是各段值域的并集补充二:复合函数如果y=f(u),(uM),u=g(x),(xA),那么 y=fg(
8、x)=F(x),(xA) 称为f、g的复合函数。例如: y=2sinX y=2cos(X2+1)7函数单调性1增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在区间D上是增函数。区间D称为y=f(x)的单调增区间 睇清楚课本单调区间的概念如果对于区间D上的任意两个自变量的值x1,x2,当x1x2 时,都有f(x1)f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意: 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; 必须是对于区间D内的
9、任意两个自变量x1,x2;当x1x2时,总有f(x1)f(x2) 2 图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的. (3).函数单调区间与单调性的判定方法(A) 定义法: 任取x1,x2D,且x1x2; 作差f(x1)f(x2); 变形通常是因式分解和配方; 定号即判断差f(x1)f(x2)的正负; 下结论指出函数f(x)在给定的区间D上的单调性(B)图象法(从图象上看升降)_(C)复合函数的单调性 复合函数fg(x)的单调性与构成它的函数u=g(x),
10、y=f(u)的单调性密切相关,其规律如下: 函数 单调性 u=g(x) 增增减 减 y=f(u) 增减增减y=fg(x)增减减增注意:1、函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 2、还记得我们在选修里学习简单易行的导数法判定单调性吗?8函数的奇偶性1偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(x)=f(x),那么f(x)就叫做偶函数2奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(x)=f(x),那么f(x)就叫做奇函数注意: 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也
11、可能既是奇函数又是偶函数。 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,那么x也一定是定义域内的一个自变量即定义域关于原点对称3具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称总结:利用定义判断函数奇偶性的格式步骤: 首先确定函数的定义域,并判断其定义域是否关于原点对称; 确定f(x)与f(x)的关系; 作出相应结论:假设f(x) = f(x) 或 f(x)f(x) = 0,那么f(x)是偶函数;假设f(x) =f(x) 或 f(x)f(x) = 0,那么f(x)是奇函数注意啊:函数定义域关于原点对称是函数具有奇偶性的必要条件
12、首先看函数的定义域是否关于原点对称,假设不对称那么函数是非奇非偶函数.假设对称,(1)再根据定义判定; (2)有时判定f(-x)=f(x)比拟困难,可考虑根据是否有f(-x)f(x)=0或f(x)/f(-x)=1来判定; (3)利用定理,或借助函数的图象判定 .9、函数的解析表达式1.函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法那么,二是要求出函数的定义域.2.求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果函数解析式的构造时,可用待定系数法;复合函数fg(x)的表达式时,可用换元法,这时要注意元的取值范围;当表达式较简单时,也可用凑
13、配法;假设抽象函数表达式,那么常用解方程组消参的方法求出f(x)10函数最大小值定义见课本p36页 利用二次函数的性质配方法求函数的最大小值 利用图象求函数的最大小值 利用函数单调性的判断函数的最大小值:如果函数y=f(x)在区间a,b上单调递增,在区间b,c上单调递减那么函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间a,b上单调递减,在区间b,c上单调递增那么函数y=f(x)在x=b处有最小值f(b);11解答数学应用题的关键有两点:二是要合理选取参变数,设定变元后,就要寻找它们之间的内在联系,选用恰当的代数式表示问题中的关系,建立相应的函数、方程、不等式等数学模型;
14、最终求解数学模型使实际问题获解.函数的性质与函数图象的特点函数性质定义图像特点函数的图象一般为一条连续曲线,也可能是由假设干条曲线或离散点组成.定义域 M自变量x的取值范围图像左右存在的范围值域N函数值y的取值范围图像上下存在的范围奇偶性奇函数对任意的都有f(-x)=-f(x)图像关于原点对称偶函数对任意的都有f(-x)=f(x)图像关于y轴对称单调性增函数递增区间对任意的当时,都有f()f()在区间a,b内,图像从左到右上升减函数递减区间对任意的,当f()在区间a,b内,图像从左到右下降周期性对任意的,如果有非零常数T,使得f(x+T)=f(x)自变量增加T时,图像重复出现零点f(x)=0时x的值图像与x轴的交点的横坐标正值区间f(x)0时x的取值范围图像位于x轴上方时,x所在的区间负值区间f(x)0时x的取值范围图像位于x轴下方时,x所在的区间在y轴上的截距f(0)的值图像与y轴的交点的纵坐标过定点与参数无关的图像上与参数无关的点