资源描述
,.
2019年广州市初中毕业生学业考试
数 学
第1部分 选择题(共30分)
1、 选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的。)
1. =( )
(A)-6 (B)6 (C) (D)
2. 广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处,到今年底各区完成碧道试点建设的长度分别为(单位:千米):5,5.2,5,5,5,6.4,6,5,6.68,48.4,6.3,这组数据的众数是( )
(A)5 (B)5.2 (C)6 (D)6.4
3.如图1,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若,则次斜坡的水平距离AC为( )
(A)75m (B)50m (C)30m (D)12m
4. 下列运算正确的是( )
(A)-3-2=-1 (B) (C) (D)
5. 平面内,⊙O的半径为1,点P到O的距离为2,过点P可作⊙O的切线条数为( )
(A)0条 (B)1条 (C)2条 (D)无数条
6.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是( )
(A) (B) (C) (D)
7.如图2,平行四边形ABCD中,AB=2,AD=4,对角线AC,BD相交于点O,且E,F,G,H分别是AO,BO,CO,DO的重点,则下列说法正确的是( )
(A)EH=HG (B)四边形EFGH是平行四边形
(C)AC⊥BD (D)的面积是的面积的2倍
8. 若点,,在反比例函数的图像上,则的大小关系是( )
(A) (B) (C) (D)
9.如图3,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为( )
(A) (B) (C)10 (D)8
10. 关于x的一元二次方程有两个实数根,若,则k的值( )
(A)0或2 (B)-2或2 (C)-2 (D)2
第2部分 非选择题(共120分)
2、 填空题(本大题共6小题,每小题3分,满分18分)
11. 如图4,点A,B,C在直线l上,PB⊥l,PA=6cm,PB=5cm,PC=7cm,则点P到直线l的距离是_____cm.
12. 代数式有意义时,x应满足的条件是_________.
13. 分解因式:=___________________.
14. 一副三角板如图5放置,将三角板ADE绕点A逆时针旋转,使得三角板ADE的一边所在的直线与BC垂直,则的度数为________.
15. 如图6放置的一个圆锥,它的主视图是直角边长为2的等腰直角三角形,则该圆锥侧面展开扇形的弧长为_______.(结果保留)
16. 如图7,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM=45,点F在射线AM上,且,CF与AD相交于点G,连接EC,EF,EG,则下列结论:
①∠ECF=45 ②的周长为
③ ④的面积的最大值
其中正确的结论是__________.(填写所有正确结论的序号)
3、 解答题(本大题共9小题,满分102分,解答应写出文字说明,证明过程或盐酸步骤。)
17. (本小题满分9分)
解方程组:
18. (本小题满分9分)
如图8,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:
19. (本小题满分10分)
已知
(1) 化简P;
(2) 若点(a,b)在一次函数的图像上,求P的值。
20. (本小题满分10分)
某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图。
频数分布表
组别
时间/小时
频数/人数
A组
2
B组
m
C组
10
D组
12
E组
7
F组
4
请根据图表中的信息解答下列问题:
(1) 求频数分布表中m的值;
(2) 求B组,C组在扇形统计图中分别对应扇形的圆心角度数,并补全扇形统计图;
(3) 已知F组的学生中,只有1名男生,其余都是女生,用列举法求以下事件的概率:从F组中随机选取2名学生,恰好都是女生。
21. (本小题满分12分)
随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座。
(1) 计划到2020年底,全省5G基站的数量是多少万座?;
(2) 按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率。
22. (本小题满分12分)
如图9,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(-1,2),AB⊥x轴于点E,正比例函数y=mx的图像与反比例函数的图像相交于A,P两点。
(1) 求m,n的值与点A的坐标;
(2) 求证:∽
(3) 求的值
23. 如图10,⊙O的直径AB=10,弦AC=8,连接BC。
(1) 尺规作图:作弦CD,使CD=BC(点D不与B重合),连接AD;(保留作图痕迹,不写作法)
(2) 在(1)所作的图中,求四边形ABCD的周长。
24.(本小题满分14分)
如图11,等边中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),关于DE的轴对称图形为.
(1) 当点F在AC上时,求证:DF//AB;
(2) 设的面积为S1,的面积为S2,记S=S1-S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;
(3) 当B,F,E三点共线时。求AE的长。
25. (本小题满分14分)
已知抛物线G:有最低点。
(1) 求二次函数的最小值(用含m的式子表示);
(2) 将抛物线G向右平移m个单位得到抛物线G1。经过探究发现,随着m的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x的取值范围;
(3) 记(2)所求的函数为H,抛物线G与函数H的图像交于点P,结合图像,求点P的纵坐标的取值范围。
2019年广州中考数学参考答案
一、选择题
1-5:BAADC 6-10:DBCAD
二、填空题
11. 5 , 12、 13、 14、 15或45 15、
16、①④
三、解答题
17、
解得:
18.证明:∵FC∥AB
∴∠A=∠FCE,∠ADE=∠F
所以在△ADE与△CFE中:
∴△ADE≌△CFE
19、(1)化简得:
(2)P=
20.(1)m=5
(2)B组的圆心角是45,C组的圆心角是90.
(3)恰好都是女生的概率是:
21、(1)6
(2)70%
22、(1)m=-2,n=1
(2)A(1,-2)
(3)
23、(1)利用尺规作图
(2)
24、(1)由折叠可知:DF=DC,∠FED=∠CED=60
又因为∠A=60
所以BF∥AB
(2)存在,S最大为:
25、(1)-3-m
(2)y= -x -2(x>1)
展开阅读全文
相关搜索