《初中数学八年级下册第5章特殊平行四边形5.3正方形教.doc》由会员分享,可在线阅读,更多相关《初中数学八年级下册第5章特殊平行四边形5.3正方形教.doc(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、5.3 正方形教学目标知识与技能1.掌握正方形的定义,弄清正方形与平行四边形、菱形、矩形的关系.2.掌握正方形的性质和判定方法.3.正确运用正方形的性质和判定方法解题.过程与方法在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,进一步培养学生数学说理的习惯与能力.情感、态度与价值观通过理解四种四边形的内在联系,培养学生的辩证观点.教学重点正方形的定义、性质和判定方法.教学难点正方形的性质和判定的综合运用.教学设计一、复习提问1.让学生叙述平行四边形、矩形、菱形的定义和它们的特殊性质.2.说明平行四边形、矩形、菱形的内在联系.二、引入新课矩形和菱形都是特殊的平行四边形,那么更加特殊的
2、平行四边形是什么图形?它又有什么特殊性质呢?这一堂课就来学习这种特殊的图形正方形(写出课题).三、探究新知(一)探索正方形的判定条件1.学生活动:四人一组进行讨论研究,老师在各组间巡视,进行引导、质疑、解惑,通过分析与讨论,师生共同总结出判定一个四边形是正方形的基本方法.(1)直接用正方形的定义判定,即先判定一个四边形是平行四边形,若这个平行四边形有一个角是直角,并且有一组邻边相等,则可以判定这个平行四边形是正方形;(2)先判定一个四边形是矩形,再判定这个矩形是菱形,那么这个四边形是正方形;(3)先判定四边形是菱形,再判定这个菱形是矩形,那么这个四边形是正方形.后两种判定均要用到矩形和菱形的判
3、定定理.矩形和菱形的判定定理是判定正方形的基础.这三个方法还可写成:有一个角是直角,且有一组邻边相等的平行四边形是正方形;有一组邻边相等的矩形是正方形;有一个角是直角的菱形是正方形.上述三种判定条件是判定四边形是正方形的一般方法,可当作判定定理用,但因为判定平行四边形、矩形、菱形的方法各异,所给出的条件各不相同,所以判定一个四边形是不是正方形的具体条件也相应可作变化,在应用时要仔细辨别后才可以作出判断.2.正方形判定条件的应用判断下列命题是真命题还是假命题,并说明理由.(1)四条边相等且四个角也相等的四边形是正方形;(2)四个角相等且对角线互相垂直的四边形是正方形;(3)对角线互相垂直平分的四
4、边形是正方形;(4)对角线互相垂直且相等的四边形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形.例1 已知:如图,在RtABC中,ACB=90,CD是ACB的平分线,DEBC,DFAC,垂足分别是E,F. 求证:四边形CFDE是正方形.师生共同完成.(二)正方形的性质因为正方形是特殊的平行四边形,还是特殊的矩形,特殊的菱形,所以它具有这些图形的所有性质,因此正方形有以下性质(由学生和老师一起总结):正方形的性质1:正方形的四个角都是直角,四条边相等.正方形的性质2:正方形的两条对角线相等并且互相垂直平分,每一条对角线平分一组对角.说明:性质2包括了平行四边形、矩形、菱形对角线的性质,
5、个题设同时有四个结论,这是该定理的特点,运用时需要哪个结论就用哪个结论,并非要把结论都写全.例2 已知:如图,在正方形ABCD中,G是对角线BD上的一点,GECD,GFBC,E,F分别为垂足,连结AG,EF.求证:AG=EF. 四、课堂小结(1)正方形与矩形、菱形、平行四边形的关系如下图. (2)正方形的判定:有一个角是直角,且有一组邻边相等的平行四边形是正方形.有一组邻边相等的矩形是正方形.有一个角是直角的菱形是正方形.(3)正方形的性质:正方形的对边平行.正方形的四边相等.正方形的四个角都是直角.正方形的对角线互相垂直平分且相等,毎条对角线平分一组对角.六、作业教材P125作业题第1,2,3,4题.