2018年度高考数学必考学习知识资料点情况总结分析归纳.doc

举报
资源描述
2018高考数学必考知识点总结归纳 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 中元素各表示什么? 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 3. 注意下列性质: (3)德摩根定律: 4. 你会用补集思想解决问题吗?(排除法、间接法) 的取值范围。 6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。 7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B中有元素无原象。) 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 9. 求函数的定义域有哪些常见类型? 10. 如何求复合函数的定义域? 义域是_。 11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗? 12. 反函数存在的条件是什么? (一一对应函数) 求反函数的步骤掌握了吗? (①反解x;②互换x、y;③注明定义域) 13. 反函数的性质有哪些? ①互为反函数的图象关于直线y=x对称; ②保存了原来函数的单调性、奇函数性; 14. 如何用定义证明函数的单调性? (取值、作差、判正负) 如何判断复合函数的单调性? ∴……) 15. 如何利用导数判断函数的单调性? 值是( ) A. 0 B. 1 C. 2 D. 3 ∴a的最大值为3) 16. 函数f(x)具有奇偶性的必要(非充分)条件是什么? (f(x)定义域关于原点对称) 注意如下结论: (1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。 17. 你熟悉周期函数的定义吗? 函数,T是一个周期。) 如: 18. 你掌握常用的图象变换了吗? 注意如下“翻折”变换: 19. 你熟练掌握常用函数的图象和性质了吗? 的双曲线。 应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程 ②求闭区间[m,n]上的最值。 ③求区间定(动),对称轴动(定)的最值问题。 ④一元二次方程根的分布问题。 由图象记性质! (注意底数的限定!) 利用它的单调性求最值与利用均值不等式求最值的区别是什么? 20. 你在基本运算上常出现错误吗? 21. 如何解抽象函数问题? (赋值法、结构变换法) 22. 掌握求函数值域的常用方法了吗? (二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法,导数法等。) 如求下列函数的最值: 23. 你记得弧度的定义吗?能写出圆心角为α,半径为R的弧长公式和扇形面积公式吗? 24. 熟记三角函数的定义,单位圆中三角函数线的定义 25. 你能迅速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对称轴吗? (x,y)作图象。 27. 在三角函数中求一个角时要注意两个方面——先求出某一个三角函数值,再判定角的范围。 28. 在解含有正、余弦函数的问题时,你注意(到)运用函数的有界性了吗? 29. 熟练掌握三角函数图象变换了吗? (平移变换、伸缩变换) 平移公式: 图象? 30. 熟练掌握同角三角函数关系和诱导公式了吗? “奇”、“偶”指k取奇、偶数。 A. 正值或负值 B. 负值 C. 非负值 D. 正值 31. 熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗? 理解公式之间的联系: 应用以上公式对三角函数式化简。(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值。) 具体方法: (2)名的变换:化弦或化切 (3)次数的变换:升、降幂公式 (4)形的变换:统一函数形式,注意运用代数运算。 32. 正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形? (应用:已知两边一夹角求第三边;已知三边求角。) 33. 用反三角函数表示角时要注意角的范围。 34. 不等式的性质有哪些? 答案:C 35. 利用均值不等式: 值?(一正、二定、三相等) 注意如下结论: 36. 不等式证明的基本方法都掌握了吗? (比较法、分析法、综合法、数学归纳法等) 并注意简单放缩法的应用。 (移项通分,分子分母因式分解,x的系数变为1,穿轴法解得结果。) 38. 用“穿轴法”解高次不等式——“奇穿,偶切”,从最大根的右上方开始 39. 解含有参数的不等式要注意对字母参数的讨论 40. 对含有两个绝对值的不等式如何去解? (找零点,分段讨论,去掉绝对值符号,最后取各段的并集。) 证明: (按不等号方向放缩) 42. 不等式恒成立问题,常用的处理方式是什么?(可转化为最值问题,或“△”问题) 43. 等差数列的定义与性质 0的二次函数) 项,即: 44. 等比数列的定义与性质 46. 你熟悉求数列通项公式的常用方法吗? 例如:(1)求差(商)法 解: [练习] (2)叠乘法 解: (3)等差型递推公式 [练习] (4)等比型递推公式 [练习] (5)倒数法 47. 你熟悉求数列前n项和的常用方法吗? 例如:(1)裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。 解: [练习] (2)错位相减法: (3)倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。 [练习] 48. 你知道储蓄、贷款问题吗? △零存整取储蓄(单利)本利和计算模型: 若每期存入本金p元,每期利率为r,n期后,本利和为: △若按复利,如贷款问题——按揭贷款的每期还款计算模型(按揭贷款——分期等额归还本息的借款种类) 若贷款(向银行借款)p元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,第n次还清。如果每期利率为r(按复利),那么每期应还x元,满足 p——贷款数,r——利率,n——还款期数 49. 解排列、组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。 (2)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一 (3)组合:从n个不同元素中任取m(m≤n)个元素并组成一组,叫做从n个不 50. 解排列与组合问题的规律是: 相邻问题捆绑法;相间隔问题插空法;定位问题优先法;多元问题分类法;至多至少问题间接法;相同元素分组可采用隔板法,数量不大时可以逐一排出结果。 如:学号为1,2,3,4的四名学生的考试成绩 则这四位同学考试成绩的所有可能情况是( ) A. 24 B. 15 C. 12 D. 10 解析:可分成两类: (2)中间两个分数相等 相同两数分别取90,91,92,对应的排列可以数出来,分别有3,4,3种,∴有10种。 ∴共有5+10=15(种)情况 51. 二项式定理 性质: (3)最值:n为偶数时,n+1为奇数,中间一项的二项式系数最大且为第 表示) 52. 你对随机事件之间的关系熟悉吗? 的和(并)。 (5)互斥事件(互不相容事件):“A与B不能同时发生”叫做A、B互斥。 (6)对立事件(互逆事件): (7)独立事件:A发生与否对B发生的概率没有影响,这样的两个事件叫做相互独立事件。 53. 对某一事件概率的求法: 分清所求的是:(1)等可能事件的概率(常采用排列组合的方法,即 (5)如果在一次试验中A发生的概率是p,那么在n次独立重复试验中A恰好发生 如:设10件产品中有4件次品,6件正品,求下列事件的概率。 (1)从中任取2件都是次品; (2)从中任取5件恰有2件次品; (3)从中有放回地任取3件至少有2件次品; 解析:有放回地抽取3次(每次抽1件),∴n=103 而至少有2件次品为“恰有2次品”和“三件都是次品” (4)从中依次取5件恰有2件次品。 解析:∵一件一件抽取(有顺序) 分清(1)、(2)是组合问题,(3)是可重复排列问题,(4)是无重复排列问题。 54. 抽样方法主要有:简单随机抽样(抽签法、随机数表法)常常用于总体个数较少时,它的特征是从总体中逐个抽取;系统抽样,常用于总体个数较多时,它的主要特征是均衡成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要用于总体中有明显差异,它们的共同特征是每个个体被抽到的概率相等,体现了抽样的客观性和平等性。 55. 对总体分布的估计——用样本的频率作为总体的概率,用样本的期望(平均值)和方差去估计总体的期望和方差。 要熟悉样本频率直方图的作法: (2)决定组距和组数; (3)决定分点; (4)列频率分布表; (5)画频率直方图。 如:从10名女生与5名男生中选6名学生参加比赛,如果按性别分层随机抽样,则组成此参赛队的概率为____________。 56. 你对向量的有关概念清楚吗? (1)向量——既有大小又有方向的量。 在此规定下向量可以在平面(或空间)平行移动而不改变。 (6)并线向量(平行向量)——方向相同或相反的向量。 规定零向量与任意向量平行。 (7)向量的加、减法如图: (8)平面向量基本定理(向量的分解定理) 的一组基底。 (9)向量的坐标表示 表示。 57. 平面向量的数量积 数量积的几何意义: (2)数量积的运算法则 [练习] 答案: 答案:2 答案: 58. 线段的定比分点 ※. 你能分清三角形的重心、垂心、外心、内心及其性质吗? 59. 立体几何中平行、垂直关系证明的思路清楚吗? 平行垂直的证明主要利用线面关系的转化: 线面平行的判定: 线面平行的性质: 三垂线定理(及逆定理): 线面垂直: 面面垂直: 60. 三类角的定义及求法 (1)异面直线所成的角θ,0<θ≤90 (2)直线与平面所成的角θ,0≤θ≤90 (三垂线定理法:A∈α作或证AB⊥β于B,作BO⊥棱于O,连AO,则AO⊥棱l,∴∠AOB为所求。) 三类角的求法: ①找出或作出有关的角。 ②证明其符合定义,并指出所求作的角。 ③计算大小(解直角三角形,或用余弦定理)。 [练习] (1)如图,OA为α的斜线OB为其在α内射影,OC为α内过O点任一直线。 (2)如图,正四棱柱ABCD—A1B1C1D1中对角线BD1=8,BD1与侧面B1BCC1所成的为30。 ①求BD1和底面ABCD所成的角; ②求异面直线BD1和AD所成的角; ③求二面角C1—BD1—B1的大小。 (3)如图ABCD为菱形,∠DAB=60,PD⊥面ABCD,且PD=AD,求面PAB与面PCD所成的锐二面角的大小。 (∵AB∥DC,P为面PAB与面PCD的公共点,作PF∥AB,则PF为面PCD与面PAB的交线……) 61. 空间有几种距离?如何求距离? 点与点,点与线,点与面,线与线,线与面,面与面间距离。 将空间距离转化为两点的距离,构造三角形,解三角形求线段的长(如:三垂线定理法,或者用等积转化法)。 如:正方形ABCD—A1B1C1D1中,棱长为a,则: (1)点C到面AB1C1的距离为___________; (2)点B到面ACB1的距离为____________; (3)直线A1D1到面AB1C1的距离为____________; (4)面AB1C与面A1DC1的距离为____________; (5)点B到直线A1C1的距离为_____________。 62. 你是否准确理解正棱柱、正棱锥的定义并掌握它们的性质? 正棱柱——底面为正多边形的直棱柱 正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。 正棱锥的计算集中在四个直角三角形中: 它们各包含哪些元素? 63. 球有哪些性质? (2)球面上两点的距离是经过这两点的大圆的劣弧长。为此,要找球心角! (3)如图,θ为纬度角,它是线面成角;α为经度角,它是面面成角。 (5)球内接长方体的对角线是球的直径。正四面体的外接球半径R与内切球半径r之比为R:r=3:1。 积为( ) 答案:A 64. 熟记下列公式了吗? (2)直线方程: 65. 如何判断两直线平行、垂直? 66. 怎样判断直线l与圆C的位置关系? 圆心到直线的距离与圆的半径比较。 直线与圆相交时,注意利用圆的“垂径定理”。 67. 怎样判断直线与圆锥曲线的位置? 68. 分清圆锥曲线的定义 70. 在圆锥曲线与直线联立求解时,消元后得到的方程,要注意其二次项系数是否为零?△≥0的限制。(求交点,弦长,中点,斜率,对称存在性问题都在△≥0下进行。) 71. 会用定义求圆锥曲线的焦半径吗? 如: 通径是抛物线的所有焦点弦中最短者;以焦点弦为直径的圆与准线相切。 72. 有关中点弦问题可考虑用“代点法”。 答案: 73. 如何求解“对称”问题? (1)证明曲线C:F(x,y)=0关于点M(a,b)成中心对称,设A(x,y)为曲线C上任意一点,设A(x,y)为A关于点M的对称点。 75. 求轨迹方程的常用方法有哪些?注意讨论范围。 (直接法、定义法、转移法、参数法) 76. 对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。
展开阅读全文
相关搜索
温馨提示:
taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。

当前位置:首页 > 教育专区 > 教案示例


本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁