《2022年北师大版初一数学知识点总结 2.pdf》由会员分享,可在线阅读,更多相关《2022年北师大版初一数学知识点总结 2.pdf(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、侧面是曲面底面是圆面圆柱,:侧面是正方形或长方形底面是多边形棱体柱体,:侧面是曲面底面是圆面圆锥,:侧面都是三角形底面是多边形棱锥锥体,:有理数)3, 2, 1:()3, 2, 1:(如负整数如正整数整数)0(零)8.4, 3.2,31,21:(如负分数分数)8. 3, 3. 5,31,21:(如正分数北师大版( 2012 最新版)初一数学定理知识点汇总七年级上册 第一章生活中的立体图形1. 2. 3. 球体:由球面围成的(球面是曲面)4. 几何图形是由点、线、面构成的。几何体与外界的接触面或我们能看到的外表就是几何体的表面。几何的表面有平面和曲面;面与面相交得到线;线与线相交得到点。5. 棱
2、:在棱柱中,任何相邻两个面的交线都叫做棱。6. 侧棱:相邻两个侧面的交线叫做侧棱,所有侧棱长都相等。7. 棱柱的上、下底面的形状相同,侧面的形状都是长方形。8. 根据底面图形的边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱 它们底面图形的形状分别为三边形、四边形、五边形、六边形9. 长方体和正方体都是四棱柱。10. 圆柱的表面展开图是由两个相同的圆形和一个长方形连成。11. 圆锥的表面展开图是由一个圆形和一个扇形连成。12. 设一个多边形的边数为 n(n 3,且 n 为整数 ),从一个顶点出发的对角线有 (n-3)条;可以把n 边形成(n-2) 个三角形;这个n 边形共有2)3(nn条对角
3、线。13. 圆上两点之间的部分叫做弧,弧是一条曲线。14. 扇形,由一条弧和经过这条弧的端点的两条半径所组成的图形。15. 凸多边形和凹多边形都属于多边形。有弧或不封闭图形都不是多边形。第二章有理数及其运算数轴的三要素:原点、正方向、单位长度(三者缺一不可)。任何一个有理数,都可以用数轴上的一个点来表示。 (反过来,不能说数轴上所有的点都表示有理数)如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。( 0 的 相反数是 0)在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。数轴上两点表示的数,右边的总比左边的大。正数在原点的右边,负数在原
4、点的左边。绝对值的定义:一个数a的 绝对值就是数轴上表示数a 的 点与原点的距离。数 a 的 绝对值记作 |a|。正数的绝对值是它本身;负数的绝对值是它的数; 0 的 绝对值是 0。)0()0(0)0(|aaaaaa或)0()0(|aaaaa绝对值的性质:除0 外,绝对值为一正数的数有两个,它们互为相反数;互为相反数的两数(除0外)的绝对值相等;任何数的绝对值总是非负数,即|a| 0比较两个负数的大小,绝对值大的反而小。比较两个负数的大小的步骤如下:先求出两个数负数的绝对值;比较两个绝对值的大小;根据 “ 两个负数,绝对值大的反而小 ” 做出正确的判断。绝对值的性质:对任何有理数a,都有 |a
5、| 0若 |a|=0,则 |a|=0,反之亦然若 |a|=b,则 a= b 对任何有理数a,都有 |a|=|-a| 有理数加法法则:同号两数相加,取相同符号,并把绝对值相加。异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大数的绝对值减去较小数的绝对值。一个数同0 相加,仍得这个数。加法的交换律、结合律在有理数运算中同样适用。灵活运用运算律,使用运算简化,通常有下列规律:互为相反的两个数,可以先相加;符号相同的数,可以先相加;分母相同的数,可以先相加;几个数相加能得到整数,可以先相加。有理数减法法则:减去一个数,等于加上这个数的相反数。有理数减法运算时注意两“ 变
6、” :改变运算符号;改变减数的性质符号(变为相反数)有理数减法运算时注意一个“ 不变 ” :被减数与减数的位置不能变换,也就是说,减法没有交换律。有理数的加减法混合运算的步骤:写成省略加号的代数和。在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;利用加法则,加法交换律、结合律简化计算。(注意:减去一个数等于加上这个数的相反数,当有减法统一成加法时,减数应变成它本身的相反数。)有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘。任何数与0 相乘,积仍为0。如果两个数互为倒数,则它们的乘积为 1。 (如: -2 与21、3553与等)乘法的交换律、结合律、分配律
7、在有理数运算中同样适用。有理数乘法运算步骤:先确定积的符号;求出各因数的绝对值的积。0 -1 -2 -3 1 2 3 越来越大精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 6 页乘积为1 的 两个有理数互为倒数。注意:零没有倒数求分数的倒数,就是把分数的分子分母颠倒位置。一个带分数要先化成假分数。正数的倒数是正数,负数的倒数是负数。有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除。 0 除以任何非0 的 数都得 0。 0不可作为除数,否则无意义。有理数的乘方注意:一个数可以看作是本身的一次方,如5=51;当底数是负数
8、或分数时,要先用括号将底数括上,再在右上角写指数。乘方的运算性质:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;任何数的偶数次幂都是非负数; 1 的 任何次幂都得1,0 的 任何次幂都得0; -1 的 偶次幂得 1;-1 的 奇次幂得 -1;在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。有理数混合运算法则:先算乘方,再算乘除 ,最后算加减。如果有括号,先算括号里面的。科学记数法:一般地,一个大于10 的 数可以表示成a 10n的 形式,其中1a、n). 2. 在应用时需要注意以下几点: 法则使用的前提条件是“同底数幂相除”而且0 不能做除数 ,所以法则中a0. 任何
9、不等于0 的 数的0 次幂等于1,即)0( 10aa,如1100,(-2.50=1),则 00无意义 . 任何不等于0 的 数的-p 次幂 (p 是正整数 ),等于这个数的p 的 次幂的倒数 ,即ppaa1( a0,p 是正整数 ), 而 0-1,0-3都是无意义的;当 a0 时,a-p的 值一定是正的; 当 a0 时,a-p的 值可能是正也可能是负的 ,如41(-2)2-,81)2(3运算要注意运算顺序. 六. 整式的乘法1. 单项式乘法法则:单项式相乘 ,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。单项式乘法法则在运用时要注意以下几点:积的
10、系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;相同字母相乘,运用同底数的乘法法则;只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;单项式乘法法则对于三个以上的单项式相乘同样适用;单项式乘以单项式,结果仍是一个单项式。2单项式与多项式相乘单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。单项式与多项式相乘时要注意以下几点:单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;运算时要注意积的符号,多项式的每一项都包括它前面的符号;在
11、混合运算时,要注意运算顺序。3多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。多项式与多项式相乘时要注意以下几点:多项式与多项式相乘要防止漏项,检查的方法是: 在没有合并同类项之前,积的项数应等于原两个多项式项数的积;多项式相乘的结果应注意合并同类项;对含有同一个字母的一次项系数是1 的 两个一次二项式相乘abxbaxbxax)()(2,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1 的 两个一次二项式(mx+a)和( nx+b)相乘可以得到abxmambmnxbnxamx)()
12、(2精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 6 页七平方差公式 1平方差公式:两数和与这两数差的积,等于它们的平方差,即22)(bababa。其结构特征是:公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;公式右边是两项的平方差,即相同项的平方与相反项的平方之差。八完全平方公式 1 完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2 倍,即2222)(bababa;口决:首平方,尾平方,2 倍乘积在中央; 2结构特征:公式左边是二项式的完全平方;公式右边共有三项,是二项式中二项的平
13、方和,再加上或减去这两项乘积的2倍。3在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现222)(baba这样的错误。九整式的除法 1单项式除法单项式单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式; 2多项式除以单项式多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。第二章平行线与相交线一台球桌面上的角 1互为余角和互为补角的有关概念与性质如果两个角的和为 90(或直角),那么这两个角互为余角;
14、如果两个角的和为 180(或平角),那么这两个角互为补角;注意:这两个概念都是对于两个角而言的,而且两个概念强调的是两个角的数量关系,与两个角的相互位置没有关系。它们的主要性质:同角或等角的余角相等;同角或等角的补角相等。二探索直线平行的条件两条直线互相平行的条件即两条直线互相平行的判定定理,共有三条:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。三平行线的特征平行线的特征即平行线的性质定理,共有三条:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。四用尺规作线段和角1关于尺规作图尺规作图是指只用圆规和没有刻度的直尺来作图。2关于尺规的功能
15、直尺的功能是:在两点间连接一条线段;将线段向两方向延长。圆规的功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧。第三章生活中的数据1利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位;对于一个近似数, 从左边第一个不是0 的 数字起, 到精确到的数位止, 所有的数字都叫做这个数的有效数字。2统计工作包括:设定目标;收集数据;整理数据;表达与描述数据;分析结果。第四章概率1随机事件发生与不发生的可能性不总是各占一半,都为50%。2现实生活中存在着大量的不确定事件,而概率正是研究不确定事件的一门学科。3了解必然事件和不可能事件发
16、生的概率。必然事件发生的概率为 1,即 P(必然事件) =1;不可能事件发生的概率为 0,即 P(不可能事件)=0;如果 A 为不确定事件,那么0P(A)1 1 2 必然发生不可能发生104.了解几何概率这类问题的计算方法事件发生概率=图形面积所有可能结果所组成的成的图形面积事件所有可能结果所组第五章三角形一认识三角形1关于三角形的概念及其按角的分类由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。这里要注意两点:组成三角形的三条线段要“不在同一直线上”;如果在同一直线上,三角形就不存在;三条线段“首尾是顺次相接”,是指三条线段两两之间有一个公共端点,这个公共端点就是三角形的顶点。
17、三角形按内角的大小可以分为三类:锐角三角形、直角三角形、钝角三角形。2关于三角形三条边的关系根据公理“连结两点的线中,线段最短”可得三角形三边关系的一个性质定理,即三角形任意两边之和大于第三边。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 6 页三角形三边关系的另一个性质:三角形任意两边之差小于第三边。对于这两个性质,要全面理解,掌握其实质,应用时才不会出错。设三角形三边的长分别为a、b、c 则:一般地,对于三角形的某一条边 a来说,一定有|b-c|ab+c 成立;反之,只有|b-c|a b+c 成立, a、b、c 三条线段才能构成三
18、角形;特殊地,如果已知线段a 最大,只要满足b+ca,那么 a、b、c 三条线段就能构成三角形;如果已知线段a最小,只要满足|b-c|a,那么这三条线段就能构成三角形。3关于三角形的内角和三角形三个内角的和为 180直角三角形的两个锐角互余;一个三角形中至多有一个直角或一个钝角;一个三角中至少有两个内角是锐角。4关于三角形的中线、高和中线三角形的角平分线、中线和高都是线段,不是直线,也不是射线;任意一个三角形都有三条角平分线,三条中线和三条高;任意一个三角形的三条角平分线、三条中线都在三角形的内部。但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部,如图1;直角三角形有一条高在三角
19、形的内部,另两条高恰好是它两条边,如图2;钝角三角形一条高在三角形的内部,另两条高在三角形的外部,如图 3。一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。F直角三角形钝角三角形锐角三角形鹏翔教图 1ADCEBDBACFEADCB二图形的全等能够完全重合的图形称为全等形。全等图形的形状和大小都相同。只是形状相同而大小不同,或者说只是满足面积相同但形状不同的两个图形都不是全等的图形。四全等三角形 1关于全等三角形的概念能够完全重合的两个三角形叫做全等三角形。互相重合的顶点叫做对应点,互相重合的边叫做对应边,互相重合的角叫做对应角所谓“完全重合”,就是各条边对应相等
20、,各个角也对应相等。因此也可以这样说,各条边对应相等,各个角也对应相等的两个三角形叫做全等三角形。 2全等三角形的对应边相等,对应角相等。 3全等三角形的性质经常用来证明两条线段相等和两个角相等。五探三角形全等的条件 1三边对应相等的两个三角形全等,简写为“边边边”或“SSS” 2有两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS” 3两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA” 4两角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS ”六作三角形1已知两个角及其夹边,求作三角形,是利用三角形全等条件“角边角”即(“ASA ”
21、)来作图的。2已知两条边及其夹角,求作三角形,是利用三角形全等条件“边角边”即(“SAS”)来作图的。3已知三条边,求作三角形,是利用三角形全等条件“边边边”即(“SSS”)来作图的。八探索直三角形全等的条件1斜边和一条直角边对应相等的两个直角三角形全等。简称为“斜边、直角边”或“HL”。这只对直角三角形成立。2 直角三角形是三角形中的一类,它具有一般三角形的性质,因而也可用 “SAS” 、 “ASA” 、 “AAS”、“SSS”来判定。直角三角形的其他判定方法可以归纳如下:两条直角边对应相等的两个直角三角形全等;有一个锐角和一条边对应相等的两个直角三角形全等。三条边对应相等的两个直角三角形全等。第七章生活中的轴对称1如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。2角平分线上的点到角两边距离相等。3线段垂直平分线上的任意一点到线段两个端点的距离相等。4角、线段和等腰三角形是轴对称图形。5等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。6轴对称图形上对应点所连的线段被对称轴垂直平分。7轴对称图形上对应线段相等、对应角相等。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 6 页