《《正多边形和圆》.ppt》由会员分享,可在线阅读,更多相关《《正多边形和圆》.ppt(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、正多边形和圆ABCDE你知道正多边形与圆的关系吗?你知道正多边形与圆的关系吗? 正多边形和圆的关系非常密切正多边形和圆的关系非常密切, ,只要把一只要把一个圆分成相等的一些弧个圆分成相等的一些弧, ,就可以作出这个圆的内接就可以作出这个圆的内接正多边形正多边形, ,这个圆就是这个正多边形的外接圆这个圆就是这个正多边形的外接圆. .问题问题1,什么样的图形是正多边形?,什么样的图形是正多边形?各边相等各边相等,各角也相等的多边形是正多边形各角也相等的多边形是正多边形. ABCD 如图如图, ,把把O O分成把分成把O O分成相等的分成相等的5 5段弧段弧, ,依次连接各分点得到正五边形依次连接各
2、分点得到正五边形ABCDE.ABCDE. AB=BC=CD=DE=EA, A=B.ABBCCDDEEA,3.BCECDAABABCDEO同理同理B B=C C=D D=E.E.又五边形又五边形ABCDABCDE E的顶点都在的顶点都在O O上上, , 五边形五边形ABCDABCD是是O O的内接正五边形的内接正五边形, , O O是五边形是五边形ABCDABCD的的外接圆外接圆. .1 1:我们以圆内接正五边形为例证明:我们以圆内接正五边形为例证明. .2. 2. 各边相等的圆内接多边形是正多边形各边相等的圆内接多边形是正多边形? ?各角各角都相等的圆内接多边形呢都相等的圆内接多边形呢? ?如
3、果是如果是, ,说明为什么说明为什么; ;如果不是如果不是, ,举出反例举出反例. .解答:各边相等的圆内接多边形是正多边形解答:各边相等的圆内接多边形是正多边形. .多边形多边形A1A2A3A4An是是 O的内接多边形的内接多边形,且且A1A2=A2A3=A3A4=An1An,12233411.nnnA AA AA AAAA A23341452121.nnA A AA A AA A AA A A123.nAAAA 多边形多边形A1A2A3A4An是正多边形是正多边形.A1AAAAAAAnO先说先说A A1 1正多边形每一边所对的圆心角正多边形每一边所对的圆心角叫做正多边形的叫做正多边形的中心
4、角中心角. .O中心角中心角半径半径R边心距边心距r我们把一个正多边形的外接圆的圆我们把一个正多边形的外接圆的圆心叫做这个正多边形的心叫做这个正多边形的中心中心. .外接圆的半径叫做正多边形的外接圆的半径叫做正多边形的半径半径. .中心到正多边形的距离叫做中心到正多边形的距离叫做正多边形的正多边形的边心距边心距. .EFCD.n360中心角nBOGAOG180边心距把边心距把AOBAOB分成分成2 2个个全等的直角三角形全等的直角三角形设正多边形的边长为设正多边形的边长为a,a,半径为半径为R R, ,它的周长为它的周长为L=naL=na. .Ra)边心距()边心距(面积,边心距)(rnarL
5、SraR2121222nn1802)(n360例例 有一个亭子有一个亭子,它的地基半径为它的地基半径为4m的正六边形的正六边形,求地基的求地基的周长和面积周长和面积(精确到精确到0.1m2).解解: 如图由于如图由于ABCDEF是正六边形是正六边形,所以它的中心角等于所以它的中心角等于 ,OBC是等边三角形,从而正六边形的边长等于它的半径是等边三角形,从而正六边形的边长等于它的半径.360606因此因此,亭子地基的周长亭子地基的周长 l =46=24(m).在在RtOPC中中,OC=4, PC=4222BC ,利用勾股定理利用勾股定理,可得边心距可得边心距22422 3.r 亭子地基的面积亭子
6、地基的面积211242 341.6(m ).22SlrOABCDEFRPr练习练习1. 1. 矩形是正多边形吗矩形是正多边形吗? ?菱形呢菱形呢? ?正方形呢正方形呢? ?为什么为什么? ?矩形不是正多边形,因为四条边不都相等矩形不是正多边形,因为四条边不都相等; ;菱形不是正多边形,因为菱形的四个角不都相等菱形不是正多边形,因为菱形的四个角不都相等; ;正方形是正多边形因为四条边都相等,四个角都相等正方形是正多边形因为四条边都相等,四个角都相等. .解答:解答:3.分别求出半径为分别求出半径为R的圆内接正三角形,正方形的边长,边的圆内接正三角形,正方形的边长,边心距和面积心距和面积.解:作等
7、边解:作等边ABC的的BC边上的高边上的高AD,垂足为垂足为D连接连接OB,则,则OB=R在在RtOBD中中 OBD=30,边心距边心距OD=1.2R在在RtABD中中 BAD=30,1322ADOAODRRR,cosADBADAB,323 .coscos30RADABRBAD21133 33.2224ABCSBC ADRRRABCDO解:连接解:连接OB,OC 作作OEBC垂足为垂足为E, OEB=90 OBE= BOE=45在在RtOBE中为等腰直角三角形中为等腰直角三角形222BEOEOB222OEOB222OBOE 2222OEOBR边心距22222BCBERR边长2222ABCDSA
8、B BCRR正方形ABCDOE抢答题:抢答题:1 1、O O是正是正 圆圆与与圆圆的圆心。的圆心。ABCABC的中心,它是的中心,它是ABCABC的的2 2、OBOB叫正叫正ABCABC的,的,它是正它是正ABCABC的的 圆圆的半径。的半径。 3、OD叫作正ABCABC的的它是正它是正ABCABC的的 圆圆的半径。的半径。ABC.OD半径半径外接外接边心距边心距内切内切外接外接内切内切4、正方形、正方形ABCD的外接圆圆心的外接圆圆心O叫做叫做正方形正方形ABCD的的5、正方形、正方形ABCD的内切圆的半径的内切圆的半径OE叫做叫做正方形正方形ABCD的的ABCD.OE中心中心边心距边心距6
9、 6、OO是正五边形是正五边形ABCDEABCDE的外接圆,弦的外接圆,弦ABAB的的弦心距弦心距OFOF叫正五边形叫正五边形ABCDEABCDE的的 ,它是正五边形它是正五边形ABCDEABCDE的圆的半径。的圆的半径。7 7、 AOBAOB叫做正五边形叫做正五边形ABCDEABCDE的角,的角,它的度数是它的度数是DEABC.OF边心距边心距内切内切中心中心72度度8 8、图中正六边形、图中正六边形ABCDEFABCDEF的中心角是的中心角是它的度数是它的度数是9 9、你发现正六边形、你发现正六边形ABCDEFABCDEF的半径与边长具有的半径与边长具有什么数量关系?为什么?什么数量关系?
10、为什么?BAEFCD.OAOB60度度解答:正六边形的半径与边解答:正六边形的半径与边长数量关系是相等长数量关系是相等因为:正六边形的中心角是因为:正六边形的中心角是6060度和半径组成的三角形是度和半径组成的三角形是等边三角形,所以边长与半等边三角形,所以边长与半径相等。径相等。 由于正多边形在生产、生活实际中有由于正多边形在生产、生活实际中有广泛的应用性,所以会画正多边形应是学生必广泛的应用性,所以会画正多边形应是学生必备能力之一。备能力之一。 怎样画一个正多边形呢?怎样画一个正多边形呢? 问题问题1 1:已知:已知OO的半径为的半径为2cm2cm,求作圆的内接,求作圆的内接正三角形正三角
11、形. .120 用量角器度量,使AOB=BOC=COA=120 用量角器或30角的三角板度量,使BAO=CAO=30 AOCB 你能用以上方法画出正四边形、正五你能用以上方法画出正四边形、正五边形、正六边形吗?边形、正六边形吗?ABCDOABCDEOOABCDEF907260 你能尺规作出正四你能尺规作出正四边形、正八边形吗?边形、正八边形吗?ABCDO只要作出已知只要作出已知OO的互的互相垂直的直径即得圆相垂直的直径即得圆内接正方形,再过圆内接正方形,再过圆心作各边的垂线与心作各边的垂线与OO相交,或作各中心角相交,或作各中心角的角平分线与的角平分线与OO相交,相交,即得圆接正八边形,即得圆
12、接正八边形,照此方法依次可作正照此方法依次可作正十六边形、正三十二十六边形、正三十二边形、正六十四边边形、正六十四边形形 你能尺规作出正六边形、正三角形、你能尺规作出正六边形、正三角形、正十二边形吗?正十二边形吗?OABCEFD 以半径长在以半径长在圆周上截取六段圆周上截取六段相等的弧,依次相等的弧,依次连结各等分点,连结各等分点,则作出正六边形则作出正六边形. . 先作出正先作出正六边形,则可作六边形,则可作正三角形,正十正三角形,正十二边形,正二十二边形,正二十四边形四边形 ABCDMNABCDEF正多边形都是轴对称图形,一个正正多边形都是轴对称图形,一个正n n边形边形共有共有n n条对称轴,每条对称轴都通过条对称轴,每条对称轴都通过n n边形边形的中心。的中心。同学们要好好学习老师同学们要好好学习老师期盼你们快快进步!期盼你们快快进步!快走啊赶紧去做正多边形与圆的习题哦!