2022年高三文科数学常考知识点整理归纳.docx

上传人:h**** 文档编号:25553011 上传时间:2022-07-12 格式:DOCX 页数:9 大小:21.30KB
返回 下载 相关 举报
2022年高三文科数学常考知识点整理归纳.docx_第1页
第1页 / 共9页
2022年高三文科数学常考知识点整理归纳.docx_第2页
第2页 / 共9页
点击查看更多>>
资源描述

《2022年高三文科数学常考知识点整理归纳.docx》由会员分享,可在线阅读,更多相关《2022年高三文科数学常考知识点整理归纳.docx(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2022年高三文科数学常考知识点整理归纳 在现实竞争如此激烈的社会环境里想获得胜利,你得先学会静默地做好自己的事,专注于某一点或某一方面,用经验和阅历积累,丰富自己的思想和学问,正如你艳羡别人在某些方面的特长,你可知道他们从小接受了这方面多少系统的训练,克服了多少训练中的困难。接下来是我为大家整理的高三文科数学常考学问点,希望大家喜爱! 高三文科数学常考学问点一 一、导数的应用 1.用导数探讨函数的最值 确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,探讨在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边削减,右边增加,则该零点处函数取微小

2、值。学习了如何用导数探讨函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。 2.生活中常见的函数优化问题 1)费用、成本最省问题 2)利润、收益问题 3)面积、体积最(大)问题 二、推理与证明 1.归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,破解的方法是充分考虑部分结论供应的信息,从中发觉一般规律;类比推理的难点是发觉两类对象的相像特征,由其中一类对象的特征得出另一类对象的特征,破解的方法是利用已经驾驭的数学学问,分析两类对象之间的关系,通过两类对象已知的相像特征得出所须要的相像特征。 2.类比推理:由两类对象具有某些类似特征和其中一类对象的某

3、些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特别到特别的推理。 三、不等式 对于含有参数的一元二次不等式解的探讨 1)二次项系数:假如二次项系数含有字母,要分二次项系数是正数、零和负数三种状况进行探讨。 2)不等式对应方程的根:假如一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则依据这两个根的大小进行分类探讨,这时,两个根的大小关系就是分类标准,假如一元二次不等式对应的方程根不能通过因式分解的方法求出来,则依据方程的判别式进行分类探讨。通过不等式练习题能够帮助你更加娴熟的运用不等式的学问点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值

4、的九种技巧这样的解题思路须要再做题的过程中总结出来。 高三文科数学常考学问点二 虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。 对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。 箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。 代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。 一些重要的结论,熟记巧用得结果。虚实互化本事大,复数相等来转化。 利用方程思想解,留意整体代换术。几何运算图上看,加法平行四边形, 减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。 三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极

5、便利。 辐角运算很奇妙,和差是由积商得。四条性质离不得,相等和模与共轭, 两个不会为实数,比较大小要不得。复数实数很亲密,须留意本质区分。 高三文科数学常考学问点三 一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件. 二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例. 三、数列(12课时,5个)1.数列;2.等差数列及其通项公式;

6、3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式. 四、三角函数(46课时17个)1.角的概念的推广;2.弧度制;3.随意角的三角函数;4,单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16余弦定理;17斜三角形解法举例. 五、平面对量(12课时,8个)1.向量2.向量的加法与减法3.实数与向量的积;4.平面对量的坐

7、标表示;5.线段的定比分点;6.平面对量的数量积;7.平面两点间的距离;8.平移. 六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含肯定值的不等式. 七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简洁线性规划问题.9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程. 八、圆锥曲线(18课时,7个)1椭圆及其标准方程;

8、2.椭圆的简洁几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简洁几何性质;6.抛物线及其标准方程;7.抛物线的简洁几何性质.九、(B)直线、平面、简洁何体(36课时,28个)1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5,直线和平面垂直的判与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面

9、的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球. 十、排列、组合、二项式定理(18课时,8个)1.分类计数原理与分步计数原理.2.排列;3.排列数公式4.组合;5.组合数公式;6.组合数的两特性质;7.二项式定理;8.二项绽开式的性质. 十一、概率(12课时,5个)1.随机事务的概率;2.等可能事务的概率;3.互斥事务有一个发生的概率;4.相互独立事务同时发生的概率;5.独立重复试验.选修(24个) 十二、概率与

10、统计(14课时,6个)1.离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回来. 十三、极限(12课时,6个)1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性. 十四、导数(18课时,8个)1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、差、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数探讨函数的单调性和极值;8函数的值和最小值. 十五、复数(4课时,4个)1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法答案补充

11、中学数学有130个学问点,从前一份试卷要考查90个学问点,覆盖率达70%左右,而且把这一项作为衡量试卷胜利与否的标准之一.这一传统近年被打破,取而代之的是关注思维,突出实力,重视思想方法和思维实力的考查.现在的我们学数学比前人华蜜啊!信任对你的学习会有帮助的,祝你胜利!答案补充一试全国中学数学联赛的一试竞赛大纲,完全根据全日制中学数学教学大纲中所规定的教学要求和内容,即高考所规定的学问范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。二试1、平面几何基本要求:驾驭初中数学竞赛大纲所确定的全部内容。补充要求:面积和面积方法。几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理

12、。几个重要的极值:到三角形三顶点距离之和最小的点-费马点。到三角形三顶点距离的平方和最小的点,重心。三角形内到三边距离之积的点,重心。几何不等式。简洁的等周问题。了解下述定理:在周长肯定的n边形的集合中,正n边形的面积。在周长肯定的简洁闭曲线的集合中,圆的面积。在面积肯定的n边形的集合中,正n边形的周长最小。在面积肯定的简洁闭曲线的集合中,圆的周长最小。几何中的运动:反射、平移、旋转。复数方法、向量方法。平面凸集、凸包及应用。答案补充其次数学归纳法。递归,一阶、二阶递归,特征方程法。函数迭代,求n次迭代,简洁的函数方程。n个变元的平均不等式,柯西不等式,排序不等式及应用。复数的指数形式,欧拉公

13、式,棣莫佛定理,单位根,单位根的应用。圆排列,有重复的排列与组合,简洁的组合恒等式。一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。简洁的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。3、立体几何多面角,多面角的性质。三面角、直三面角的基本性质。正多面体,欧拉定理。体积证法。截面,会作截面、表面绽开图。4、平面解析几何直线的法线式,直线的极坐标方程,直线束及其应用。二元一次不等式表示的区域。三角形的面积公式。圆锥曲线的切线和法线。圆的幂和根轴。 高三文科数学常

14、考学问点四 导数:导数的意义-导数公式-导数应用(极值最值问题、曲线切线问题) 1、导数的定义:在点处的导数记作. 2.导数的几何物理意义:曲线在点处切线的斜率 k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0)切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。 3.常见函数的导数公式:; ;。 4.导数的四则运算法则: 5.导数的应用: (1)利用导数推断函数的单调性:设函数在某个区间内可导,假如,那么为增函数;假如,那么为减函数; 留意:假如已知为减函数求字母取值范围,那么不等式恒成立。 (2)求极值的步骤: 求导数; 求方程的根; 列表:检验在方程根的左右的符号,假如左正右负,那么函数在这个根处取得极大值;假如左负右正,那么函数在这个根处取得微小值; (3)求可导函数值与最小值的步骤: 求的根;把根与区间端点函数值比较,的为值,最小的是最小值。 高三文科数学常考学问点第9页 共9页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作计划

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁