《2022年高三数学期中考试必记知识点.docx》由会员分享,可在线阅读,更多相关《2022年高三数学期中考试必记知识点.docx(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022年高三数学期中考试必记知识点 你手心里有交织的曲线和无来由的茧,那是岁月留下的痕迹。你站在行驶在岁月河流的船头上,表情坚毅,你无悔的付出终会让一段旅程熠熠闪光。学习也是一样,有付出就会有回报的,下面是我给大家带来的高三数学期中考试必记学问点,希望能帮助到你! 高三数学期中考试必记学问点1 等差数列基本性质 公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d. 公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd. 若anbn为等差数列,则anbn与kan+bn(k、b为非零常数)也是等差数列. 对任何m、n,在等差数列中有:an=am+(n-m)d(m
2、、nN+),特殊地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性. 、一般地,当m+n=p+q(m,n,p,qN+)时,am+an=ap+aq. 公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差). (7)下表成等差数列且公差为m的项ak.ak+m.ak+2m.(k,mN+)组成公差为md的等差数列。 在等差数列中,从其次项起,每一项(有穷数列末项除外)都是它前后两项的等差中项. 当公差d0时,等差数列中的数随项数的增大而增大;当d0时,等差数列中的数随项数的削减而减小;d=0时,等差数列中的数等于一个常数.
3、 高三数学期中考试必记学问点2 1、基本概念: (1)必定事务:在条件S下,肯定会发生的事务,叫相对于条件S的必定事务; (2)不行能事务:在条件S下,肯定不会发生的事务,叫相对于条件S的不行能事务; (3)确定事务:必定事务和不行能事务统称为相对于条件S的确定事务; (4)随机事务:在条件S下可能发生也可能不发生的事务,叫相对于条件S的随机事务; (5)频数与频率:在相同的条件S下重复n次试验,视察某一事务A是否出现,称n次试验中事务A出现的次数nA为事务A出现的频数;称事务A出现的比例 fn(A)=为事务A出现的概率:对于给定的随机事务A,假如随着试验次数的增加,事务A发生的频率fn(A)
4、稳定在某个常数上,把这个常数记作P(A),称为事务A的概率。 (6)频率与概率的区分与联系:随机事务的频率,指此事务发生的次数nA与试验总次数n的比值,它具有肯定的稳定性,总在某个常数旁边摇摆,且随着试验次数的不断增多,这种摇摆幅度越来越小。我们把这个常数叫做随机事务的概率,概率从数量上反映了随机事务发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事务的概率 3.1.3概率的基本性质 1、基本概念: (1)事务的包含、并事务、交事务、相等事务 (2)若AB为不行能事务,即AB=,那么称事务A与事务B互斥; (3)若AB为不行能事务,AB为必定事务,那么称事务A与事务B互为对立事
5、务; (4)当事务A与B互斥时,满意加法公式:P(AB)=P(A)+P(B);若事务A与B为对立事务,则AB为必定事务,所以P(AB)=P(A)+P(B)=1,于是有P(A)=1P(B) 2、概率的基本性质: 1)必定事务概率为1,不行能事务概率为0,因此0P(A)1; 2)当事务A与B互斥时,满意加法公式:P(AB)=P(A)+P(B); 3)若事务A与B为对立事务,则AB为必定事务,所以P(AB)=P(A)+P(B)=1,于是有P(A)=1P(B); 4)互斥事务与对立事务的区分与联系,互斥事务是指事务A与事务B在一次试验中不会同时发生,其详细包括三种不同的情形:(1)事务A发生且事务B不
6、发生;(2)事务A不发生且事务B发生;(3)事务A与事务B同时不发生,而对立事务是指事务A与事务B有且仅有一个发生,其包括两种情形;(1)事务A发生B不发生;(2)事务B发生事务A不发生,对立事务互斥事务的特别情形。 3.2.13.2.2古典概型及随机数的产生 1、(1)古典概型的运用条件:试验结果的有限性和全部结果的等可能性。 (2)古典概型的解题步骤; 求出总的基本领件数; 求出事务A所包含的基本领件数,然后利用公式P(A) 3.3.13.3.2几何概型及匀称随机数的产生 1、基本概念: (1)几何概率模型:假如每个事务发生的概率只与构成该事务区域的长度(面积或体积)成比例,则称这样的概率
7、模型为几何概率模型; (2)几何概型的概率公式: P(A)= (3)几何概型的特点:1)试验中全部可能出现的结果(基本领件)有无限多个;2)每个基本领件出现的可能性相等. 高三数学期中考试必记学问点3 符合肯定条件的动点所形成的图形,或者说,符合肯定条件的点的全体所组成的集合,叫做满意该条件的点的轨迹. 轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性). 【轨迹方程】就是与几何轨迹对应的代数描述。 一、求动点的轨迹方程的基本步骤 建立适当的坐标系
8、,设出动点M的坐标; 写出点M的集合; 列出方程=0; 化简方程为最简形式; 检验。 二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。 直译法:干脆将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。 定义法:假如能够确定动点的轨迹满意某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。 相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满意的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。 参数法:当动点
9、坐标x、y之间的干脆关系难以找到时,往往先找寻x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。 交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。 _直译法:求动点轨迹方程的一般步骤 建系建立适当的坐标系; 设点设轨迹上的任一点P(x,y); 列式列出动点p所满意的关系式; 代换依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简; 证明证明所求方程即为符合条件的动点轨迹方程。 高三数学期中考试必记学问点第7页 共7页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页