2022年高三数学总单元知识点概括.docx

上传人:h**** 文档编号:25552646 上传时间:2022-07-12 格式:DOCX 页数:7 大小:18.98KB
返回 下载 相关 举报
2022年高三数学总单元知识点概括.docx_第1页
第1页 / 共7页
2022年高三数学总单元知识点概括.docx_第2页
第2页 / 共7页
点击查看更多>>
资源描述

《2022年高三数学总单元知识点概括.docx》由会员分享,可在线阅读,更多相关《2022年高三数学总单元知识点概括.docx(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2022年高三数学总单元知识点概括 数学一般方法主要是数学解题的详细方法及相关技能、技巧,比如中学数学里的配方法、换元法、待定系数法和判别式法等。以下是我给大家整理的高三数学总单元学问点概括,希望能助你一臂之力! 高三数学总单元学问点概括1 一、排列 1定义 (1)从n个不同元素中取出m个元素,根据肯定的依次排成一列,叫做从n个不同元素中取出m个元素的一排列。 (2)从n个不同元素中取出m个元素的全部排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn. 2排列数的公式与性质 (1)排列数的公式:Amn=n(n-1)(n-2)(n-m+1) 特例:当m=n时,Amn=n!=n(n-

2、1)(n-2)321 规定:0!=1 二、组合 1定义 (1)从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合 (2)从n个不同元素中取出m个元素的全部组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。 2比较与鉴别 由排列与组合的定义知,获得一个排列须要“取出元素”和“对取出元素按肯定依次排成一列”两个过程,而获得一个组合只须要“取出元素”,不管怎样的依次并成一组这一个步骤。 排列与组合的区分在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的依次有关。因此,所给问题是否与取出元素的依次有关,是推断这一问题是排列问题

3、还是组合问题的理论依据。 三、排列组合与二项式定理学问点 1.计数原理学问点 乘法原理:N=n1n2n3nM(分步)加法原理:N=n1+n2+n3+nM(分类) 2.排列(有序)与组合(无序) Anm=n(n-1)(n-2)(n-3)-(n-m+1)=n!/(n-m)!Ann=n! Cnm=n!/(n-m)!m! Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k! 3.排列组合混合题的解题原则:先选后排,先分再排 排列组合题的主要解题方法:优先法:以元素为主,应先满意特别元素的要求,再考虑其他元素.以位置为主考虑,即先满意特别位置的要求,再考虑其他位置. 捆绑法(

4、集团元素法,把某些必需在一起的元素视为一个整体考虑) 插空法(解决相间问题)间接法和去杂法等等 在求解排列与组合应用问题时,应留意: (1)把详细问题转化或归结为排列或组合问题; (2)通过分析确定运用分类计数原理还是分步计数原理; (3)分析题目条件,避开“选取”时重复和遗漏; (4)列出式子计算和作答. 常常运用的数学思想是: 分类探讨思想;转化思想;对称思想. 4.二项式定理学问点: (a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+Cnran-rbr+-+Cnn-1abn-1+Cnnbn 特殊地:(1+x)n=1+Cn1x+Cn2x2+Cnrxr+C

5、nnxn 主要性质和主要结论:对称性Cnm=Cnn-m 二项式系数在中间。(要留意n为奇数还是偶数,答案是中间一项还是中间两项) 全部二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+Cnr+Cnn=2n 奇数项二项式系数的和=偶数项而是系数的和 Cn0+Cn2+Cn4+Cn6+Cn8+=Cn1+Cn3+Cn5+Cn7+Cn9+=2n-1 通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。 5.二项式定理的应用:解决有关近似计算、整除问题,运用二项绽开式定理并且结合放缩法证明与指数有关的不等式。 6.留意二项式系数与项的系数(字母项的系数

6、,指定项的系数等,指运算结果的系数)的区分,在求某几项的系数的和时留意赋值法的应用。 高三数学总单元学问点概括2 (1)不等关系 感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。 (2)一元二次不等式 经验从实际情境中抽象出一元二次不等式模型的过程。 通过函数图象了解一元二次不等式与相应函数、方程的联系。 会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。 (3)二元一次不等式组与简洁线性规划问题 从实际情境中抽象出二元一次不等式组。 了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组(参见例2)。 从实际情境中抽象出一些简洁的二元线性

7、规划问题,并能加以解决(参见例3)。 (4)基本不等式: 探究并了解基本不等式的证明过程。 会用基本不等式解决简洁的(小)值问题。 高三数学总单元学问点概括3 1、圆柱体: 表面积:2Rr+2Rh体积:R2h(R为圆柱体上下底圆半径,h为圆柱体高) 2、圆锥体: 表面积:R2+R(h2+R2)的平方根体积:R2h/3(r为圆锥体低圆半径,h为其高, 3、正方体 a-边长,S=6a2,V=a3 4、长方体 a-长,b-宽,c-高S=2(ab+ac+bc)V=abc 5、棱柱 S-底面积h-高V=Sh 6、棱锥 S-底面积h-高V=Sh/3 7、棱台 S1和S2-上、下底面积h-高V=hS1+S2

8、+(S1S2)1/2/3 8、拟柱体 S1-上底面积,S2-下底面积,S0-中截面积 h-高,V=h(S1+S2+4S0)/6 9、圆柱 r-底半径,h-高,C底面周长 S底底面积,S侧侧面积,S表表面积C=2r S底=r2,S侧=Ch,S表=Ch+2S底,V=S底h=r2h 10、空心圆柱 R-外圆半径,r-内圆半径h-高V=h(R2-r2) 11、直圆锥 r-底半径h-高V=r2h/3 12、圆台 r-上底半径,R-下底半径,h-高V=h(R2+Rr+r2)/3 13、球 r-半径d-直径V=4/3r3=d3/6 14、球缺 h-球缺高,r-球半径,a-球缺底半径V=h(3a2+h2)/6

9、=h2(3r-h)/3 15、球台 r1和r2-球台上、下底半径h-高V=h3(r12+r22)+h2/6 16、圆环体 R-环体半径D-环体直径r-环体截面半径d-环体截面直径 V=22Rr2=2Dd2/4 17、桶状体 D-桶腹直径d-桶底直径h-桶高 V=h(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心) V=h(2D2+Dd+3d2/4)/15(母线是抛物线形) 高三数学总单元学问点概括第7页 共7页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作计划

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁