《2022年高三文科数学知识要点总结.docx》由会员分享,可在线阅读,更多相关《2022年高三文科数学知识要点总结.docx(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022年高三文科数学知识要点总结 无论你是理科生还是文科生,数学公式,你必需驾驭。接下来是我为大家整理的高三文科数学学问要点总结,希望大家喜爱! 高三文科数学学问要点总结一 1、函数的单调性 (1)设x1、x2a,b,x1x2那么 f(x1)f(x2)0f(x)在a,b上是增函数; f(x1)f(x2)0f(x)在a,b上是减函数. (2)设函数yf(x)在某个区间内可导,若f(x)0,则f(x)为增函数;若f(x)0,则f(x)为减函数. 2、函数的奇偶性 对于定义域内随意的x,都有f(-x)=f(x),则f(x)是偶函数; 对于定义域内随意的x,都有f(x)f(x),则f(x)是奇函数。
2、 奇函数的图象关于原点对称,偶函数的图象关于y轴对称。 高三文科数学学问要点总结二 【一、集合与函数】 内容子交并补集,还有幂指对函数。性质奇偶与增减,视察图象最明显。 复合函数式出现,性质乘法法则辨,若要具体证明它,还须将那定义抓。 指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。 函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数; 正切函数角不直,余切函数角不平;其余函数实数集,多种状况求交集。 两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴; 求解特别有规律,反解换元定义域;反函数的定义域,原来函数的值域。 幂函数性质易记,指数化既约分数;函
3、数性质看指数,奇母奇子奇函数, 奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。 【二、三角函数】 三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。 同角关系很重要,化简证明都须要。正六边形顶点处,从上到下弦切割; 中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角, 顶点随意一函数,等于后面两根除。诱导公式就是好,负化正后大化小, 变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变, 将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值, 余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。 计算证明角先行,留意结
4、构函数名,保持基本量不变,繁难向着简易变。 逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。 万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用; 1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范; 三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围; 利用直角三角形,形象直观好换名,简洁三角的方程,化为最简求解集; 【三、不等式】 解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。 高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。 证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。 干脆困难分析
5、好,思路清楚综合法。非负常用基本式,正面难则反证法。 还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。 【四、数列】 等差等比两数列,通项公式N项和。两个有限求极限,四则运算依次换。 数列问题多变化,方程化归整体算。数列求和比较难,错位相消巧转换, 取长补短高斯法,裂项求和公式算。归纳思想特别好,编个程序好思索: 一算二看三联想,揣测证明不行少。还有数学归纳法,证明步骤程序化: 首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理来确定。 【五、复数】 虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。 对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是
6、辐角度。 箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。 代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。 一些重要的结论,熟记巧用得结果。虚实互化本事大,复数相等来转化。 利用方程思想解,留意整体代换术。几何运算图上看,加法平行四边形, 减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。 三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极便利。 辐角运算很奇妙,和差是由积商得。四条性质离不得,相等和模与共轭, 两个不会为实数,比较大小要不得。复数实数很亲密,须留意本质区分。 【六、排列、组合、二项式定理】 加法乘法两原理,贯穿始终的法则
7、。与序无关是组合,要求有序是排列。 两个公式_,两种思想和方法。归纳出排列组合,应用问题须转化。 排列组合在一起,先选后排是常理。特别元素和位置,首先留意多考虑。 不重不漏多思索,_空是技巧。排列组合恒等式,定义证明建模试。 关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。 【七、立体几何】 点线面三位一体,柱锥台球为代表。距离都从点动身,角度皆为线线成。 垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。 方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。 立体几何协助线,常用垂线和平面。射影概念很重要,对于解题最关键。 异面直线二面角,体积射影公
8、式活。公理性质三垂线,解决问题一大片。 【八、平面解析几何】 有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。 笛卡尔的观点对,点和有序实数对,两者一来对应,开创几何新途径。 两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。 三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。 四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。 解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。 高三文科数学学问要点总结三 1.计数原理学问点 乘法原理:N=n1n2n3nM(分步)加法原理:N=n1+n2+n3+nM(分类) 2.排列(有
9、序)与组合(无序) Anm=n(n-1)(n-2)(n-3)-(n-m+1)=n!/(n-m)!Ann=n! Cnm=n!/(n-m)!m! Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k! 3.排列组合混合题的解题原则:先选后排,先分再排 排列组合题的主要解题方法:优先法:以元素为主,应先满意特别元素的要求,再考虑其他元素.以位置为主考虑,即先满意特别位置的要求,再考虑其他位置. 捆绑法(集团元素法,把某些必需在一起的元素视为一个整体考虑) 插空法(解决相间问题)间接法和去杂法等等 在求解排列与组合应用问题时,应留意: (1)把详细问题转化或归结为排列或组合问
10、题; (2)通过分析确定运用分类计数原理还是分步计数原理; (3)分析题目条件,避开“选取”时重复和遗漏; (4)列出式子计算和作答. 常常运用的数学思想是: 分类探讨思想;转化思想;对称思想. 4.二项式定理学问点: (a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+Cnran-rbr+-+Cnn-1abn-1+Cnnbn 特殊地:(1+x)n=1+Cn1x+Cn2x2+Cnrxr+Cnnxn 主要性质和主要结论:对称性Cnm=Cnn-m 二项式系数在中间。(要留意n为奇数还是偶数,答案是中间一项还是中间两项) 全部二项式系数的和:Cn0+Cn1+Cn2+
11、Cn3+Cn4+Cnr+Cnn=2n 奇数项二项式系数的和=偶数项而是系数的和 Cn0+Cn2+Cn4+Cn6+Cn8+=Cn1+Cn3+Cn5+Cn7+Cn9+=2n-1 通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。 5.二项式定理的应用:解决有关近似计算、整除问题,运用二项绽开式定理并且结合放缩法证明与指数有关的不等式。 6.留意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区分,在求某几项的系数的和时留意赋值法的应用。 高三文科数学学问要点总结四 1.辗转相除法是用于求公约数的一种方法,这种算法由欧几里得在
12、公元前年左右首先提出,因而又叫欧几里得算法. 2.所谓辗转相法,就是对于给定的两个数,用较大的数除以较小的数.若余数不为零,则将较小的数和余数构成新的一对数,接着上面的除法,直到大数被小数除尽,则这时的除数就是原来两个数的公约数. 3.更相减损术是一种求两数公约数的方法.其基本过程是:对于给定的两数,用较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,接着这个操作,直到所得的数相等为止,则这个数就是所求的公约数. 4.秦九韶算法是一种用于计算一元二次多项式的值的方法. 5.常用的排序方法是干脆插入排序和冒泡排序. 6.进位制是人们为了计数和运算便利而约定的记数系统.“满进一”
13、,就是k进制,进制的基数是k. 7.将进制的数化为十进制数的方法是:先将进制数写成用各位上的数字与k的幂的乘积之和的形式,再根据十进制数的运算规则计算出结果. 8.将十进制数化为进制数的方法是:除k取余法.即用k连续去除该十进制数或所得的商,直到商为零为止,然后把每次所得的余数倒着排成一个数就是相应的进制数. 1.重点:理解辗转相除法与更相减损术的原理,会求两个数的公约数;理解秦九韶算法原理,会求一元多项式的值;会对一组数据根据肯定的规则进行排序;理解进位制,能进行各种进位制之间的转化. 2.难点:秦九韶算法求一元多项式的值及各种进位制之间的转化. 3.重难点:理解辗转相除法与更相减损术、秦九
14、韶算法原理、排序方法、进位制之间的转化方法. 高三文科数学学问要点总结五 (1)依次结构:依次结构是最简洁的算法结构,语句与语句之间,框与框之间是按从上到下的依次进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。 依次结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按依次执行算法步骤。如在示意图中,A框和B框是依次执行的,只有在执行完A框指定的操作后,才能接着执行B框所 指定的操作。 (2)条件结构:条件结构是指在算法中通过对条件的推断依据条件是否成立而选择不同流向的 算法结构。 条件P是否成立而选择执行A框或B框。无论P条件是否成立,只能
15、执行A框或B框之一,不行能同时执行 A框和B框,也不行能A框、B框都不执行。一个推断结构可以有多个推断框。 (3)循环结构:在一些算法中,常常会出现从某处起先,根据肯定条件,反复执行某一处理步骤的状况,这就是循环结构,反复执行的处理步骤为循环体,明显,循环结构中肯定包含条件结构。循环结构又称重复结构,循环结构可细分为两类: 一类是当型循环结构,如下左图所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,再推断条件P是否成立,假如仍旧成立,再执行A框,如此反复执行A框,直到某一次条件P不成立为止,此时不再执行A框,离开循环结构。 另一类是直到型循环结构,如下右图所示,它的功能是先执行
16、,然后推断给定的条件P是否成立,假如P仍旧不成立,则接着执行A框,直到某一次给定的条件P成立为止,此时不再执行A框,离开循环结构。 留意: 1循环结构要在某个条件下终止循环,这就须要条件结构来推断。因此,循环结构中肯定包含条件结构,但不允许“死循环”。 2在循环结构中都有一个计数变量和累 加变量。计数变量用于记录循环次数,累加变量用于输出结果。计数变量和累加变量一般是同步执行的,累加一次,计数一次 高三文科数学学问要点总结第12页 共12页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页