《2022年青岛版初三数学知识点梳理.docx》由会员分享,可在线阅读,更多相关《2022年青岛版初三数学知识点梳理.docx(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022年青岛版初三数学知识点梳理 学问是一座宝库,而实践就是开启宝库的钥匙。学习任何学科,不仅须要大量的记忆,还须要大量的练习,从而达到巩固学问的效果。下面是我给大家整理的一些初三数学的学问点,希望对大家有所帮助。 九年级数学学问点整理 空间与图形 图形的相识: 1、点,线,面 点,线,面: 图形是由点,线,面构成的。 面与面相交得线,线与线相交得点。 点动成线,线动成面,面动成体。 绽开与折叠: 在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的全部侧棱长相等,棱柱的上下底面的形态相同,侧面的形态都是长方体。 N棱柱就是底面图形有N条边的棱柱。 截一个几何体:用一个平
2、面去截一个图形,截出的面叫做截面。 视图:主视图,左视图,俯视图。 多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。 弧,扇形: 由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。 圆可以分割成若干个扇形。 角 线: 线段有两个端点。 将线段向一个方向无限延长就形成了射线。射线只有一个端点。 将线段的两端无限延长就形成了直线。直线没有端点。 经过两点有且只有一条直线。 比较长短: 两点之间的全部连线中,线段最短。 两点之间线段的长度,叫做这两点之间的距离。 角的度量与表示: 角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。 一度的1/60是一分,一
3、分的1/60是一秒。 角的比较: 角也可以看成是由一条射线围着他的端点旋转而成的。 一条射线围着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边接着旋转,当他又和始边重合时,所成的角叫做周角。 从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。 九年级数学学问点梳理 代数式 1、代数式与有理式 用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。 整式和分式统称为有理式。 2、整式和分式 含有加、减、乘、除、乘方运算的代数式叫做有理式。 没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。 有除法运算并
4、且除式中含有字母的有理式叫做分式。 3、单项式与多项式 没有加减运算的整式叫做单项式。(数字与字母的积-包括单独的一个数或字母) 几个单项式的和,叫做多项式。 说明: 依据除式中有否字母,将整式和分式区分开;依据整式中有否加减运算,把单项式、多项式区分开。 进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。 4、同类项及其合并 条件:字母相同;相同字母的指数相同 合并依据:乘法安排律。 5、根式 表示方根的代数式叫做根式。 含有关于字母开方运算的代数式叫做无理式。 6、同类二次根式、最简二次根式、分母有理化 化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。 满
5、意条件:被开方数的因数是整数,因式是整式;被开方数中不含有开得尽方的因数或因式。 把分母中的根号划去叫做分母有理化。 初三数学学习方法 概念课 要重视教学过程,要主动体验学问产生、发展的过程,要把学问的来龙去脉搞清晰,相识学问发生的过程,理解公式、定理、法则的推导过程,变更死记硬背的方法,这样我们就能从学问形成、发展过程当中,理解到学会它的乐趣;在解决问题的过程中,体会到胜利的喜悦。 习题课 要驾驭“听一遍不如看一遍,看一遍不如做一遍,做一遍不如讲一遍,讲一遍不如辩一辩”的诀窍。除了听老师讲,看老师做以外,要自己多做习题,而且要把自己的体会主动、大胆地讲给大家听,遇到问题要和同学、老师辩一辩,
6、坚持真理,改正错误。在听课时要留意老师展示的解题思维过程,要多思索、多探究、多尝试,发觉创建性的证法及解法,学会“小题大做”和“大题小做”的解题方法,即对选择题、填空题一类的客观题要仔细对待绝不马虎大意,就像对待大题目一样,做到下笔如有神;对综合题这样的大题目不妨把“大”拆“小”,以“退”为“进”,也就是把一个比较困难的问题,拆成或退为最简洁、最原始的问题,把这些小题、简洁问题想通、想透,找出规律,然后再来一个飞跃,进一步升华,就能凑成一个大题,即退中求进了。假如有了这种分解、综合的实力,加上有扎实的基本功还有什么题目难得倒我们。 复习课 在数学学习过程中,要有一个醒悟的复习意识,渐渐养成良好
7、的复习习惯,从而逐步学会学习。数学复习应是一个反思性学习过程。要反思对所学习的学问、技能有没有达到课程所要求的程度;要反思学习中涉及到了哪些数学思想方法,这些数学思想方法是如何运用的,运用过程中有什么特点;要反思基本问题(包括基本图形、图像等),典型问题有没有真正弄懂弄通了,平常遇到的问题中有哪些问题可归结为这些基本问题;要反思自己的错误,找出产生错误的缘由,订出改正的措施。在新学期大家打算一本数学学习“病例卡”,把平常犯的错误登记来,找出“病因”开出“处方”,并且常常拿出来看看、想想错在哪里,为什么会错,怎么改正,通过你的努力,到中考时你的数学就没有什么“病例”了。并且数学复习应在数学学问的运用过程中进行,通过运用,达到深化理解、发展实力的目的,因此在新的一年要在老师的指导下做肯定数量的数学习题,做到举一反三、娴熟应用,避开以“练”代“复”的题海战术。 青岛版初三数学学问点梳理第6页 共6页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页