《2022年贵州省贵阳清镇高中数学函数的应用3.2.2函数模型的应用举例学案无答案新人教A版 .pdf》由会员分享,可在线阅读,更多相关《2022年贵州省贵阳清镇高中数学函数的应用3.2.2函数模型的应用举例学案无答案新人教A版 .pdf(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精品资料欢迎下载3.3.1 函数模型的应用举例使用说明与学法指导 1、认真自学课本P101 P106,牢记基础知识,弄清课本例题,试完成教学案练习,掌握基本题型,再针对疑问重新研读课本. 2、限时完成,书写规范,高效学习,激情投入. 3、小组长在课中讨论环节要组织高效讨论,做到互学,帮学。一、学习目标1会利用给定的函数模型解决实际问题( 重点 ) 2能够建立确定性函数模型解决问题及建立拟合函数模型解决实际问题( 重点、难点 ) 二、问题导学(自学课本后,请解答下列问题)教材整理函数模型的应用阅读教材P101 P106,完成下列问题1常见的函数模型函数模型函数解析式(1) 正比例函数模型f(x)
2、 kx(k为常数,k0)(2) 反比例函数模型(3) 一次函数模型(4) 二次函数模型(5) 指数函数模型(6) 对数函数模型(7) 幂函数模型f (x) axnb(a,b,n为常数,a0,n1)(8) 分段函数模型f(x) f1x,xD1f2x,xD2fnx,xDn2. 建立函数模型解决问题的框图表示精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 5 页精品资料欢迎下载1某地为了抑制一种有害昆虫的繁殖,引入了一种以该昆虫为食物的特殊动物,已知该动物的繁殖数量y(只) 与引入时间x( 年) 的关系为yalog2(x 1) ,若该动物在引
3、入一年后的数量为 100 只,则第7 年它们发展到( ) A300 只B400 只C600 只 D700 只2据调查,某自行车存车处在某星期日的存车量为2 000辆次,其中变速车存车费是每辆一次 0.8 元,普通车存车费是每辆一次0.5 元,若普通车存车数为x辆次,存车费总收入为y元,则y关于x的函数关系式是( ) Ay0.3x800(0 x2 000)By0.3x1 600(0 x2 000)Cy 0.3x800(0 x2 000)Dy 0.3x1 600(0 x2 000)三、合作探究一次函数、二次函数模型的应用例 1:商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购
4、买人数越少把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300 元现在这种羊毛衫的成本价是100 元/ 件,商场以高于成本价的价格( 标价 ) 出售问:(1) 商场要获取最大利润,羊毛衫的标价应定为每件多少元?精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 5 页精品资料欢迎下载(2) 通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75% ,那么羊毛衫的标价为每件多少元?变式1:某水厂的蓄水池中有400 吨水,每天零点由池中放水向居民供水,同时以每小时60 吨的速度向池中注水,若t小时内向居民供水总量
5、为1006t(0t24),求供水几小时后,蓄水池中的存水量最少. 指数函数、对数函数模型的应用例 2:声强级Y( 单位:分贝 ) 由公式Y10lg I1012给出,其中I为声强 ( 单位: W/m2) (1) 平时常人交谈时的声强约为106W/m2,求其声强级;(2) 一般常人能听到的最低声强级是0 分贝,求能听到的最低声强为多少?(3) 比较理想的睡眠环境要求声强级Y50 分贝,已知熄灯后两个学生在宿舍说话的声强为5107W/m2,问这两位同学是否会影响其他同学休息?变式 2:目前某县有100 万人,经过x年后为y万人如果年平均增长率是1.2%,请回答下列问题:(1) 写出y关于x的函数解析
6、式;(2) 计算 10 年后该县的人口总数( 精确到 0.1 万人 );(3) 计算大约多少年后该县的人口总数将达到120 万( 精确到 1 年) 分段函数模型的应用例 3:经市场调查, 某城市的一种小商品在过去的近20 天内的销售量( 件) 与价格 ( 元) 均为时间t( 天 ) 的 函 数 , 且 销 售 量 近 似 满 足g(t) 80 2t( 件 ) , 价 格 近 似 满 足 于f(t) 1512t,t2512t,t( 元) 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 5 页精品资料欢迎下载(1) 试写出该种商品的日销售额
7、y与时间t(0t20)的函数表达式;(2) 求该种商品的日销售额y的最大值与最小值变式 3:国庆期间,某旅行社组团去风景区旅游,若旅行团人数在30 人或 30 人以下,每人需交费用为900 元;若旅行团人数多于30 人,则给予优惠:每多1 人,人均费用减少10 元,直到达到规定人数75 人为止旅行社需支付各种费用共计15 000 元. 【导学号: 97030142】(1) 写出每人需交费用y关于人数x的函数;(2) 旅行团人数为多少时,旅行社可获得最大利润?拟合数据构建函数模型例 4:某企业常年生产一种出口产品,自2013 年以来,每年在正常情况下,该产品产量平稳增长已知2013 年为第 1
8、年,前 4 年年产量f(x)( 万件 ) 如下表所示:x 1234 f(x)4.005.587.008.44 (1) 画出 20132016 年该企业年产量的散点图;(2) 建立一个能基本反映( 误差小于0.1) 这一时期该企业年产量变化的函数模型,并求出函数解析式;(3)2017年( 即x5) 因受到某国对我国该产品反倾销的影响,年产量减少30% ,试根据所建立的函数模型,确定2017 年的年产量为多少?变式 4:某电视新产品投放市场后第一个月销售100 台,第二个月销售200 台,第三个月销售 400 台,第四个月销售790 台,则下列函数模型中能较好地反映销量y与投放市场的月数x(1x4
9、,xN*)之间关系的是( ) Ay100 xBy50 x250 x100 Cy502x Dy100 x四、当堂检测1在某个物理实验中,测得变量x和变量y的几组数据,如下表:x 0.500.992.013.98 y 0.990.010.982.00 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 5 页精品资料欢迎下载则对x,y最适合的拟合函数是( ) Ay2xByx21 Cy2x2 Dylog2x2 某工厂生产某种产品固定成本为2 000 万元,并且每生产一单位产品,成本增加 10 万元又知总收入K是单位产品数Q的函数,K(Q) 40Q
10、120Q2,则总利润L(Q) 的最大值是 _万元3某商人将彩电先按原价提高40% ,然后在广告上写上“大酬宾,八折优惠”结果是每台彩电比原价多赚了270 元,则每台彩电的原价为_元42008 年我国人口总数为14 亿,如果人口的自然年增长率控制在1.25%,则 _年我国人口将超过20 亿(lg 2 0.301 0 ,lg 3 0.477 1 ,lg 7 0.845 1)5已知A,B两地相距150 km ,某人开汽车以60 km/h的速度从A地到达B地,在B地停留1 小时后再以50 km/h的速度返回A地(1) 把汽车离开A地的距离s表示为时间t的函数 ( 从A地出发时 ) ,并画出函数的图象;(2) 把车速v(km/h) 表示为时间t(h) 的函数,并画出函数的图象五、我的学习总结知识与技能方面:数学思想与方法方面:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 5 页