《2021高三数学北师大版(理)一轮课后限时集训:47 立体几何中的向量方法 .doc》由会员分享,可在线阅读,更多相关《2021高三数学北师大版(理)一轮课后限时集训:47 立体几何中的向量方法 .doc(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、立体几何中的向量方法建议用时:45分钟一、选择题1若直线l的方向向量与平面的法向量的夹角等于120,则直线l与平面所成的角等于()A120B60C30D60或30C设直线l与平面所成的角为,直线l与平面的法向量的夹角为.则sin |cos |cos 120|.又090,30.2在正方体A1B1C1D1ABCD中,AC与B1D所成角大小为()A. B.C.D.D建立如图所示的空间直角坐标系,设正方体边长为1,则A(0,0,0), C(1,1,0),B1(1,0,1),D(0,1,0). (1,1,0),(1,1,1),1(1)110(1)0,AC与B1D所成的角为.3.如图,在空间直角坐标系中有
2、直三棱柱ABCA1B1C1,CACC12CB,则直线BC1与直线AB1夹角的余弦值为()A. B.C.D.A设CA2,则C(0,0,0),A(2,0,0),B(0,0,1),C1(0,2,0),B1(0,2,1),可得向量(2,2,1),(0,2,1),由向量的夹角公式得cos,.4在直三棱柱ABCA1B1C1中,AB1,AC2,BC,D,E分别是AC1和BB1的中点,则直线DE与平面BB1C1C所成的角为()A30B45C60D90A由已知AB2BC2AC2,得ABBC.以B为原点,分别以BC,BA,BB1所在直线为x轴,y轴,z轴建立空间直角坐标系,如图所示,设AA12a,则A(0,1,0
3、),C(,0,0),D,E(0,0,a),所以,平面BB1C1C的一个法向量为n(0,1,0),cos,n,n60,所以直线DE与平面BB1C1C所成的角为30.故选A.5.如图,在四棱锥PABCD中,四边形ABCD为平行四边形,且BC平面PAB,PAAB,M为PB的中点,PAAD2.若AB1,则二面角BACM的余弦值为()A. B.C.D.A因为BC平面PAB,PA平面PAB,所以PABC,又PAAB,且BCABB,所以PA平面ABCD.以点A为坐标原点,分别以AB,AD,AP所在直线为x轴,y轴,z轴,建立空间直角坐标系Axyz.则A(0,0,0),C(1,2,0),P(0,0,2),B(
4、1,0,0),M,所以(1,2,0),求得平面AMC的一个法向量为n(2,1,1),又平面ABC的一个法向量(0,0,2),所以cosn,.所以二面角BACM的余弦值为.二、填空题6在正四棱柱ABCDA1B1C1D1中,AA12AB,则CD与平面BDC1所成角的正弦值等于_以D为坐标原点,建立空间直角坐标系,如图,设AA12AB2,则D(0,0,0),C(0,1,0),B(1,1,0),C1(0,1,2),则(0,1,0),(1,1,0),(0,1,2)设平面BDC1的法向量为n(x,y,z),则所以有令y2,得平面BDC1的一个法向量n(2,2,1)设CD与平面BDC1所成的角为,则sin
5、|cosn,|.7(2019汕头模拟)在底面是直角梯形的四棱锥SABCD中,ABC90,ADBC,SA平面ABCD,SAABBC1,AD,则平面SCD与平面SAB所成锐二面角的余弦值是_如图所示,建立空间直角坐标系,则依题意可知,D,C(1,1,0),S(0,0,1),可知是平面SAB的一个法向量设平面SCD的一个法向量n(x,y,z),因为,所以即令x2,则有y1,z1,所以n(2,1,1)设平面SCD与平面SAB所成的锐二面角为,则cos .8.(2019北京模拟)如图所示,四棱锥PABCD中,PD底面ABCD,底面ABCD是边长为2的正方形,PD2,E是棱PB的中点,M是棱PC上的动点,
6、当直线PA与直线EM所成的角为60时,那么线段PM的长度是_如图建立空间直角坐标系,则A(2,0,0),P(0,0,2),B(2,2,0),E是棱PB的中点,E(1,1,1),设M(0,2m,m),则,解得m,M,PM.三、解答题9.如图,在正三棱柱ABCA1B1C1中,ABAA12,点P,Q分别为A1B1,BC的中点(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值解如图,在正三棱柱ABCA1B1C1中,设AC,A1C1 的中点分别为O,O1,连接OB,OO1,则OBOC,OO1OC,OO1OB,以,为基底,建立如图所示的空间直角坐标系Oxyz.因为A
7、BAA12,所以A(0,1,0),B(,0,0),C(0,1,0),A1(0,1,2),B1(,0,2),C1(0,1,2)(1)因为P为A1B1的中点,所以P,从而,(0,2,2),故|cos,|.因此,异面直线BP与AC1所成角的余弦值为.(2)因为Q为BC的中点,所以Q,因此,(0,2,2),(0,0,2)设n(x,y,z)为平面AQC1的一个法向量,则即不妨取n(,1,1)设直线CC1与平面AQC1所成角为,则sin |cos,n|,所以直线CC1与平面AQC1所成角的正弦值为.10(2019全国卷)如图,长方体ABCDA1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BEEC
8、1.(1)证明:BE平面EB1C1;(2)若AEA1E,求二面角BECC1的正弦值解(1)证明:由已知得,B1C1平面ABB1A1,BE平面ABB1A1,故B1C1BE.又BEEC1,B1C1EC1C1,所以BE平面EB1C1.(2)由(1)知BEB190.由题设知RtABERtA1B1E,所以AEB45,故AEAB,AA12AB.以D为坐标原点,的方向为x轴正方向,|为单位长度,建立如图所示的空间直角坐标系Dxyz,则C(0,1,0),B(1,1,0),C1(0,1,2),E(1,0,1),(1,0,0),(1,1,1),(0,0,2)设平面EBC的法向量为n(x,y,z),则即所以可取n(
9、0,1,1)设平面ECC1的法向量为m(x1,y1,z1),则即所以可取m(1,1,0)于是cosn,m.所以,二面角BECC1的正弦值为.1设正方体ABCDA1B1C1D1的棱长为2,则点D1到平面A1BD的距离是()A. B.C.D.D如图建立坐标系,则D1(0,0,2),A1(2,0,2),B(2,2,0),(2,0,0),(2,2,0),(2,0,2)设平面A1BD的法向量为n(x,y,z),则令z1,得n(1,1,1)D1到平面A1BD的距离d.2.如图,平面ABCD平面ABEF,四边形ABCD是正方形,四边形ABEF是矩形,且AFADa,G是EF的中点,则GB与平面AGC所成角的正
10、弦值为_如图,以A为原点建立空间直角坐标系,则A(0,0,0),B(0,2a,0),C(0,2a,2a),G(a,a,0),(a,a,0),(0,2a,2a),(a,a,0),设平面AGC的法向量为n1(x1,y1,1),由n1(1,1,1)sin .3已知正四棱锥SABCD的侧棱长与底面边长都相等,E是SB的中点,则AE与SD所成角的余弦值为_以两对角线AC与BD的交点O作为原点,以OA,OB,OS所在直线分别为x,y,z轴建立空间直角坐标系,设边长为2,则有O(0,0,0),A(,0,0),B(0,0),S(0,0,),D(0,0),E,(0,),|cos,|,故AE与SD所成角的余弦值为
11、.4(2018全国卷)如图所示,在三棱锥PABC中,ABBC2,PAPBPCAC4,O为AC的中点(1)证明:PO平面ABC;(2)若点M在棱BC上,且二面角MPAC为30,求PC与平面PAM所成角的正弦值解(1)证明:因为APCPAC4,O为AC的中点,所以OPAC,且OP2.连接OB.因为ABBCAC,所以ABC为等腰直角三角形,且OBAC,OBAC2.由OP2OB2PB2知POOB.由OPOB,OPAC,OBACO,知PO平面ABC.(2)如图,以O为坐标原点,的方向为x轴正方向,建立空间直角坐标系Oxyz.由已知得O(0,0,0),B(2,0,0),A(0,2,0),C(0,2,0),
12、P(0,0,2),(0,2,2)取平面PAC的一个法向量(2,0,0)设M(a,2a,0)(0a2),则(a,4a,0)设平面PAM的法向量为n(x,y,z)由n0,n0得可取n(a4),a,a),所以cos,n.由已知可得|cos,n|,所以,解得a4(舍去)或a,所以n.又(0,2,2),所以cos,n.所以PC与平面PAM所成角的正弦值为.1已知斜四棱柱ABCDA1B1C1D1的各棱长均为2,A1AD60,BAD90,平面A1ADD1平面ABCD,则直线BD1与平面ABCD所成的角的正切值为()A. B.C.D.C取AD中点O,连接OA1,易证A1O平面ABCD.建立如图所示的空间直角坐
13、标系,得B(2,1,0),D1(0,2,),(2,3,),平面ABCD的一个法向量为n(0,0,1),设BD1与平面ABCD所成的角为,sin ,tan .2(2019天津高考)如图,AE平面ABCD,CFAE,ADBC,ADAB,ABAD1,AEBC2.(1)求证:BF平面ADE;(2)求直线CE与平面BDE所成角的正弦值;(3)若二面角EBDF的余弦值为,求线段CF的长解依题意,可以建立以A为原点,分别以,的方向为x轴,y轴,z轴正方向的空间直角坐标系(如图),可得A(0,0,0),B(1,0,0),C(1,2,0),D(0,1,0),E(0,0,2)设CFh(h0),则F.(1)依题意,(1,0,0)是平面ADE的法向量,又(0,2,h),可得0,又因为直线BF平面ADE,所以BF平面ADE.(2)依题意,(1,1,0),(1,0,2),(1,2,2)设n(x,y,z)为平面BDE的法向量,则 即 令z1,可得n(2,2,1)所以cos,n.所以,直线CE与平面BDE所成角的正弦值为.(3)设m(x,y,z)为平面BDF的法向量,则 即 不妨令y1,可得m.由题意,有,解得h.经检验,符合题意所以,线段CF的长为.