《2022年数学的历史小故事.docx》由会员分享,可在线阅读,更多相关《2022年数学的历史小故事.docx(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022年数学的历史小故事 数学的历史小故事有哪些?某些故事是人类对自身历史的一种记忆行为,人们通过多种故事形式,数学在古代就有了。下面是我为大家带来的数学的历史小故事五篇,希望大家能够喜爱! 关于数学的故事有哪些 趣味数学小故事大全 经典数学小故事合集 数学小故事 数学小故事一 勒斯(古希腊数学家、天文学家)来到埃及,人们想摸索一下他的实力,就问他是否能测量金字塔高度。泰勒斯说可以,但有一个条件法老必需在场。其次天,法老如约而至,金字塔四周也聚集了不少围观的老百姓。秦勒斯来到金字塔前,阳光把他的影子投在地面上。 每过一会儿,他就让人测量他影子的长度,当测量值与他身高完全吻合时,他立即在大金字
2、塔在地面上的投影处作一记号,然后再丈量金字塔底到投影尖顶的距离。这样,他就报出了金字塔准确的高度。 在法老的恳求下,他向大家讲解了如何从“影长等于身长”推到“塔影等于塔高”的原理。也就是今日所说的相像三角形定理。 数学小故事二 大约1500年前,欧洲的数学家们是不知道用“0”的。他们运用罗马数字。罗马数字是用几个表示数的符号,根据肯定规则,把它们组合起来表示不同的数目。在这种数字的运用里,不须要“0”这个数字。而在当时,罗马帝国有一位学者从印度记数法里发觉了“0”这个符号。 他发觉,有了“0”,进行数学运算便利极了,他特别兴奋,还把印度人运用“0”的方法向大家做了介。过了一段时间,这件事被当时
3、的罗马教皇知道了。当时是欧洲的中世纪,教会的势力特别大,罗马教皇的权利更是远远超过皇。教皇特别愤怒,他斥责说,神圣的数是上帝创建的, 在上帝创建的数里没有“0”这个怪物,如今谁要把它给引进来,谁就是亵渎上帝 ! 于是,教皇就下令,把这位学者抓了起来,并对他施加了酷刑,用夹子把他的十个手指头紧紧夹注,使他两手残废,让他再也不能握笔写就这样,“0”被那个愚昧、残忍的罗马教皇明令禁止了。 但是。虽然“0”被禁止运用,然而罗马的数学家们还是不管禁令,在数学的探讨中仍旧隐私地运用“0”,仍旧用“0”做出了许多数学上的贡。后来“0”最终在欧洲被广泛运用,而罗马数字却渐渐被淘汰了。 数学小故事三 战国时期,
4、齐威王与大将田忌赛马,齐威王和田忌各有三匹好马:上马,中马与下马。竞赛分三次进行,每赛马以千金作赌。由于两者的马力相差无几,而齐威王的马分别比田忌的相应等级的马要好,所以一般人都以为田忌必输无疑。 但是田忌接受了门客孙膑(着名军事家)的看法,用下马对齐威王的上马,用上马对齐威王的中马,用中马对齐威王的下马,结果田忌以2比1胜齐威王而得千金。这是我国古代运用对策论思想解决问题的一个范例。 数学小故事四 祖冲之(公元429-500),字文远,是我国古代南北朝时代南朝杰出的科学家,原籍是范阳郡遒县(今河北莱源县),因战乱,他的祖先迁居江南。公元429年,祖冲之诞生在南方宋朝一个士大夫的家庭。这家有几
5、代探讨历法,祖父掌管土木建筑,也懂得一些科学技术,所以祖冲之从小就有机会接触家传的科学学问,他少年时代就起先钻研古代的经典。思想机敏。勇于创新,勤奋地学习,对各种事物敢于大胆设想,勇于创新,并且勤于实践。他搜集和阅读了大量有关天文、数学等方面的书籍与文献资料,并常常进行精密的测量和细致的推算。就象自己说的那样;“亲量圭尺,躬察仪漏,目尽毫厘,心军筹策”。由于他既崇尚抽象的理论,又注意理论的应用,突破了天命论、神奇主义的桎梏,敢于实践,勇于改革,因此在当时劳动人民创建的高度发达的物质财宝的基础上,取得了不少有价值的科学成果,特殊是天文历法和数学方面的成就更为突出。 我国古代曾经长期采纳“十九年七
6、闰月”的方法作为历法来计算阴历。祖冲之经过细致推算和探讨,发觉这种历法虽然可以使两种(阴历和阳历)天数大致相符,但还不够精确,过了二百年就会相差一天。因此,他决心打破传统观念改革闰法。总结了前人阅历,经反复试验,科学计算,改为第三百九十一年中有一百四十四个闰年。这样就相当精确了。他在一文历法中的另一重大成就是在历法计算中第一次应用了岁差,即指地球围绕太阳运行五周,不行能完全回到上一年的冬至点的现象。他算出了岁差为四十五年十一个月后退一度(一度等于60分),并在他的大明历中加以应用。虽然尚不够精确,但这在天文学史上却是一个空前的创举。为了使历法更精确,他还算出交点月,即月亮连续两次经过黄白交点所
7、需的时间是27。21223日,这与现代测得的21。21222日极相近似。这为精确地算日食月食妇生的时间创建了条件。 在上述基础上,他制成了当时最科学的历法大明历。那时他才三十三岁,公元462年,他把大明历交给朝廷,恳求予以颁行。但遭到以贵族官僚戴法兴为首的坚决反对。戴法兴是一个很有权势的人物,又稍稍懂一点历史,但思想特别保守,戴硬说太阳转动一周(事实上是地球绕太阳一周)的时间有快有慢,没有规律。祖冲之反对说:“太阳的转动是有一眯规律的,这是有事实依据的”。戴又说:“日月星辰的快慢改变,凡人是测算不出的”。祖冲之说“这些改变并不神奇,只要人们进行精密的观测和细致的推算,是完全可以算出来的。事实上
8、人们已驾驭了肯定的规律”。把戴批驳得张口结舌,祖冲之最终击败了保守势力,取取得最终成功,然而直到他死后十年在他儿子祖恒一再举荐下,新历法才在公元510年被正式采纳。 祖冲之在数学探讨方面,特殊是在圆周率的探讨上,做出了在数学史具有深远影响的巨磊贡献。古代最早求得的圆周率是“3”,西汉末年刘 又得到3.1547的圆周率值。东汉的张衡算出3.1622的值,到了三国末年,数学家刘徽创建了用割圆术求得圆周率方法,得出3.141024的值。祖冲之地汲取了其中一些 有的东西,又不为前人结论束缚,经过自己的精密测算,算出圆周率值在3.1415926和3.1415927之间,并以22/7和355/113作为用
9、分数表示圆周率的疏率和密率。这是世界上第一个最精确的圆周率,欧洲人奥托和安托尼兹直到公元1573年,才先后求出这个数值。事实上早在他们一千一百多年前,祖冲之就得到这个数值了,因而,日本数学家三上义夫主见称名为“祖率”。 祖冲之在推算圆周率时,对九位数的大数目,须要反复进行包括加减乘除与开方等方法的运算五百三十次以上。而且当时他还是用筹码(小竹棍)来计算的。从这里可以看出他严谨的治学看法和坚韧不拔的毅力。 后来,祖冲之把数学上的探讨成果写成一本书,叫做“缀术”,内容很丰富,惋惜早已失传了。 除了在天文、历法和数学方面做出重大贡献外,在他五十岁那年,曾经仿制胜利一辆指南车,这车子不管怎么转动,车上
10、木人的手总是指着南方。他又看到群众用人力磨数值特别吃力,于是开动脑筋,反复试验,制成了水碓磨。同时还制造胜利一种“千里船”,经过试验,日行百余里。此外,他还懂得音乐,注过多种经典。因而祖冲之可以说是我国古代杰出而又博学多才的一位科学家。 祖恒是祖冲之的儿子,字景烁,生卒年月已无可考。他也是一个博学多才的数学家,曾在公元504年、509年和510年三次上书建议采纳祖冲之的大明历,最终实现了父亲的遗愿。 祖恒的主要工作是修补编辑祖冲之的缀术。 祖恒推导球体积公式的方法特别奇妙,其理论依据是这样一条被他当作“公理”运用的命题:“幂势既同,则积不容异”,其中“幂”是截面积,“势”是立体的高。把这命题翻
11、译成现代汉文并写得具体一点就是:“界于二平行平面之间的确良两个立体,被任一平行这二平面的平面所截,假如两个截面的面积相等,则这两个立体的体积相等”。这命题在国外通常称为“卡瓦列利原理”或“卡瓦列利定理”。卡瓦列利(1598-1647)是意大利米兰人,伽利略的学生,波伦拿高校教授,为十七世纪意大利数学家中影响最大的一个。这定理是他于1635年在波伦拿出版的名著连续不行分几何一书中提出的,但却比祖恒迟了1100多年。 数学小故事五 公元前500年,古希腊毕达哥拉斯(Pythagoras)学派的弟-子希勃索斯(Hippasus)发觉了一个惊人的事实,一个正方形的对角线与 其一边的长度是不行公度的(若
12、正方形边长是1,则对角线的长不是一个有理数)这一不行公度性与毕氏学派“万物皆为数”(指有理数)的哲理大相径庭。这一发 现使该学派领导人惶恐、愤怒,认为这将动摇他们在学术界的统治地位。希勃索斯因此被囚禁,受到百般熬煎,最终竞遭到沉舟身亡的惩处。 不行通约的本质是什么?长期以来众说纷坛,得不到正确的说明,两个不行通约的比值也始终被认为是不行理喻的数。15世纪意大利闻名画家达.芬奇称之为“无理的数”,17世纪德国天文学家开普勒称之为“不行名状”的数。 然而,真理终归是沉没不了的,毕氏学派抹杀真理才是“无理”。人们为了纪念希勃索斯这位为真理而献身的可敬学者,就把不行通约的量取名为“无理数”这便是“无理数”的由来. 同时它导致了第一次数学危机。 数学的历史小故事第8页 共8页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页