2022年高中数学-解三角形知识点汇总及典型例题 .pdf

上传人:Q****o 文档编号:25477570 上传时间:2022-07-11 格式:PDF 页数:14 大小:495.09KB
返回 下载 相关 举报
2022年高中数学-解三角形知识点汇总及典型例题 .pdf_第1页
第1页 / 共14页
2022年高中数学-解三角形知识点汇总及典型例题 .pdf_第2页
第2页 / 共14页
点击查看更多>>
资源描述

《2022年高中数学-解三角形知识点汇总及典型例题 .pdf》由会员分享,可在线阅读,更多相关《2022年高中数学-解三角形知识点汇总及典型例题 .pdf(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、解三角形的必备知识和典型例题及详解一、知识必备:1直角三角形中各元素间的关系:在ABC中,C90,ABc,ACb,BCa。1三边之间的关系:a2b2c2。 勾股定理2锐角之间的关系:AB90;3边角之间的关系: 锐角三角函数定义sinAcosBca,cosAsinBcb,tanAba。2斜三角形中各元素间的关系:在ABC中,A、B、C为其内角,a、b、c分别表示A、B、C的对边。1三角形内角和:ABC。2正弦定理:在一个三角形中,各边和它所对角的正弦的比相等RCcBbAa2sinsinsinR为外接圆半径3余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a

2、2b2c22bccosA;b2c2a22cacosB;c2a2b22abcosC。 3三角形的面积公式:1S21aha21bhb21chcha、hb、hc分别表示a、b、c上的高;2S21absinC21bcsinA21acsinB;4解三角形:由三角形的六个元素即三条边和三个内角中的三个元素其中至少有一个是边求其他未知元素的问题叫做解三角形广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等主要类型:1两类正弦定理解三角形的问题:第 1、已知两角和任意一边,求其他的两边及一角. 第 2、已知两角和其中一边的对角,求其他边角. 2两类余弦定理解三角形的

3、问题:第 1、已知三边求三角. 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 14 页2 第 2、已知两边和他们的夹角,求第三边和其他两角. 5三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。 1角的变换因为在 ABC 中, A+B+C= ,所以sin(A+B)=sinC;cos(A+B)= cosC;tan(A+B)= tanC。2sin2cos,2cos2sinCBACBA; 2判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式. 6求解三角形应用题的一般步骤

4、:1分析:分析题意,弄清已知和所求;2建模:将实际问题转化为数学问题,写出已知与所求,并画出示意图;3求解:正确运用正、余弦定理求解; 4检验:检验上述所求是否符合实际意义。二、典例解析题型 1:正、余弦定理例 1 1在ABC中,已知032.0A,081.8B,42.9acm,解三角形;2在ABC中,已知20acm,28bcm,040A,解三角形角度精确到01,边长精确到1cm 。解: 1根据三角形内角和定理,0180()CAB000180(32.081.8 )066.2;根据正弦定理,00sin42.9sin81.880.1()sinsin32.0aBbcmA;根据正弦定理,00sin42.

5、9sin66.274.1().sinsin32.0aCccmA2根据正弦定理,0sin28sin40sin0.8999.20bABa因为00B0180,所以064B,或0116 .B当064B时,00000180() 180(4064 )76CAB,精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 14 页3 00sin20sin7630().sinsin40aCccmA当0116B时,00000180() 180(40116 )24CAB,00sin20sin2413().sinsin40aCccmA点评:应用正弦定理时1应注意已知两边

6、和其中一边的对角解三角形时,可能有两解的情形; 2对于解三角形中的复杂运算可使用计算器题型 2:三角形面积例 2在ABC中,sincosAA22,AC2,3AB,求Atan的值和ABC的面积。解法一:先解三角方程,求出角A的值。.21)45cos(,22)45cos(2cossinAAAA又0180A, 4560 ,105.AA13tantan(4560 )2313A, .46260sin45cos60cos45sin)6045sin(105sinsinASACABAABC1212232643426sin()。解法二:由sincosAA计算它的对偶关系式sincosAA的值。sincosAA2

7、221(sincos )212sincos20180 ,sin0,cos0.1(sin 2)2AAAAAAAA另解精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 14 页4 23cossin21)cos(sin2AAAA, sincosAA62+得sin A264。得cosA264。从而sin264tan23cos426AAA。以下解法略去。点评:本小题主要考查三角恒等变形、三角形面积公式等基本知识,着重数学考查运算能力,是一道三角的基础试题。两种解法比较起来,你认为哪一种解法比较简单呢?题型 3:三角形中的三角恒等变换问题例 3在AB

8、C中,a、b、c分别是A、B、C的对边长,已知a、b、c成等比数列,且a2c2=acbc,求A的大小及cBbsin的值。分析:因给出的是a、b、c之间的等量关系,要求A,需找A与三边的关系,故可用余弦定理。由b2=ac可变形为cb2=a,再用正弦定理可求cBbsin的值。解法一:a、b、c成等比数列,b2=ac。又a2c2=acbc,b2+c2a2=bc。在ABC中,由余弦定理得:cosA=bcacb2222=bcbc2=21,A=60。在ABC中,由正弦定理得sinB=aAbsin,b2=ac,A=60,acbcBb60sinsin2=sin60 =23。解法二:在ABC中,精选学习资料 -

9、 - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 14 页5 由面积公式得21bcsinA=21acsinB。b2=ac,A=60,bcsinA=b2sinB。cBbsin=sinA=23。评述:解三角形时,找三边一角之间的关系常用余弦定理,找两边两角之间的关系常用正弦定理。题型 4:正、余弦定理判断三角形形状例 4在ABC中,假设2cosBsinAsinC ,则ABC的形状一定是A.等腰直角三角形B. 直角三角形C.等腰三角形D. 等边三角形答案: C 解析: 2sinAcosBsinC =sin AB=sinAcosB+cosAsinB sin AB

10、 0,AB另解:角化边点评:此题考查了三角形的基本性质,要求通过观察、分析、判断明确解题思路和变形方向,通畅解题途径题型 5:三角形中求值问题例 5ABC的三个内角为ABC、 、,求当 A为何值时,cos2cos2BCA取得最大值,并求出这个最大值。解析:由A+B+C= ,得B+C2=2A2,所以有cosB+C2 =sinA2。cosA+2cosB+C2 =cosA+2sinA2 =1 2sin2A2 + 2sinA2= 2(sinA212)2+ 32;当 sinA2 = 12,即 A=3时, cosA+2cosB+C2取得最大值为32。点评:运用三角恒等式简化三角因式最终转化为关于一个角的三

11、角函数的形式,通过三角函数的性质求得结果。题型 6:正余弦定理的实际应用例 6 2009 辽宁卷文,理如图,A,B,C,D 都在同一个与水平面垂直的平面内,B,D为两岛上的两座075,灯塔的塔顶。 测量船于水面A处测得 B点和 D点的仰角分别为030,于水面C处测得 B点和 D点的仰角均为060,AC=0.1km。试探究图中B,D间距离与另外哪两点间距离相等,然后求精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 14 页6 B,D的距离计算结果精确到0.01km,21.414 ,62.449 解: 在ABC中, DAC=30 , ADC

12、=60 DAC=30,所以 CD=AC=0.1 又BCD=180 6060=60,故 CB是CAD底边 AD的中垂线,所以BD=BA ,在ABC中,,ABCsinCBCAsinAAB即 AB=,2062315sinACsin60因此, BD=。km33.020623故 B,D的距离约为0.33km。点评:解三角形等内容提到高中来学习,又近年加强数形结合思想的考查和对三角变换要求的降低,对三角的综合考查将向三角形中问题伸展,但也不可太难,只要掌握基本知识、概念,深刻理解其中基本的数量关系即可过关。三、思维总结1解斜三角形的常规思维方法是:1已知两角和一边如A、B、C ,由A+B+C = 求C,由

13、正弦定理求a、b;2已知两边和夹角 如a、b、c ,应用余弦定理求c边;再应用正弦定理先求较短边所对的角,然后利用A+B+C = ,求另一角;3已知两边和其中一边的对角如a、b、A ,应用正弦定理求B,由A+B+C= 求C,再由正弦定理或余弦定理求c边,要注意解可能有多种情况;4已知三边a、b、c,应余弦定理求A、B,再由A+B+C = ,求角C。2三角学中的射影定理:在ABC 中,AcCabcoscos,3两内角与其正弦值:在ABC 中,BABAsinsin,4解三角形问题可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大角定理及几何作图来帮助理解” 。三、课后跟踪训练1. 201

14、0 上海文数18. 假设ABC的三个内角满足sin:sin:sin5:11:13ABC,则ABC精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 14 页7 A一定是锐角三角形. B一定是直角三角形. C一定是钝角三角形. (D)可能是锐角三角形,也可能是钝角三角形. 解析:由sin:sin:sin5:11:13ABC及正弦定理得a:b:c=5:11:13 由余弦定理得0115213115cos222c,所以角C为钝角2. 2010 天津理数7在 ABC 中,内角A,B,C的对边分别是a,b,c ,假设223abbc,sin2 3sinC

15、B,则 A=( ) A030B060C0120D0150【答案】 A 【解析】此题主要考查正弦定理与余弦定理的基本应用,属于中等题。由正弦定理得2 32 322cbcbRR,所以 cosA=2222+c -a322bbccbcbc=32 3322bcbcbc,所以 A=300 【温馨提示】解三角形的基本思路是利用正弦、余弦定理将边化为角运算或将角化为边运算。3. 2010 湖北理数 3. 在ABC中, a=15,b=10,A=60 ,则cosB= A 223 B 2 23 C 63 D 63【答案】 D 【解析】 根据正弦定理sinsinabAB可得1510sin60sinB解得3sin3B,

16、又因为ba, 则BA,故 B为锐角,所以26cos1sin3BB,故 D正确 . 4. 2010广东理数11. 已知 a,b,c分别是 ABC的三个内角A,B,C 所对的边,假设 a=1,b=3, A+C=2B,则 sinC= . 解:由A+C=2B及A+B+ C=180知,B=60由正弦定理知,13sinsin60A,即1sin2A由ab知,60AB,则30A,180180306090CAB,sinsin901C精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 14 页8 52009 湖南卷文 在锐角ABC中,1,2 ,BCBA则cos

17、ACA的值等于,AC 的取值范围为. 解析设,2 .AB由正弦定理得,12.sin 2sin2coscosACBCACAC由锐角ABC得0290045,又01803903060,故233045cos22,2cos(2,3).AC6.2009 全国卷理 在ABC中,内角 A、 B、C的对边长分别为a、b、c,已知222acb,且sincos3cossin,ACAC求 b 分析: : 此题事实上比较简单, 但考生反应不知从何入手. 对已知条件 (1)222acb左侧是二次的右侧是一次的, 学生总感觉用余弦定理不好处理, 而对已知条件 (2) sincos3cossin,ACAC过多的关注两角和与差

18、的正弦公式, 甚至有的学生还想用现在已经不再考的积化和差, 导致找不到突破口而失分. 解法:在ABC中则sincos3cossin,ACAC由正弦定理及余弦定理有 :2222223,22abcbcaacabbc角化边化简并整理得:2222()acb. 又由已知222acb24bb. 解得40(bb或舍). 7在ABC中,已知A、B、C成等差数列,求2tan2tan32tan2tanCACA的值。解析:因为A、B、C成等差数列,又AB C180,所以AC 120,从而2CA 60,故 tan32CA. 由两角和的正切公式,得32tan2tan12tan2tanCACA。精选学习资料 - - -

19、- - - - - - 名师归纳总结 - - - - - - -第 8 页,共 14 页9 所以,2tan2tan332tan2tanCACA32tan2tan32tan2tanCACA。点评:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为已知角求解,同时结合三角变换公式的逆用。8. 2009 四川卷文在ABC中,AB、为锐角,角ABC、 、所对的边分别为abc、 、,且510sin,sin510AB I 求AB的值; II 假设21ab,求abc、 、的值。解 I AB、为锐角,510sin,sin510AB 222 53 10cos1sin,cos1sin510AABB

20、2 53 105102cos()coscossinsin.5105102ABABAB 0AB, 4ABII 由 I 知34C, 2sin2C由sinsinsinabcABC得5102abc,即2 ,5ab cb又 21ab 221bb 1b 2,5ac9. 2010 陕西文数17 本小题总分值12 分在 ABC中,已知B=45,D 是 BC边上的一点,AD=10,AC=14,DC=6 ,求 AB的长 . 解在 ADC中, AD=10,AC=14,DC=6, 由余弦定理得cos2222ADDCACAD DC=1003619612 1062, ADC=120 , ADB=60 在 ABD中, AD

21、=10, B=45, ADB=60 ,精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 14 页10 由正弦定理得sinsinABADADBB,AB=310sin10sin 6025 6sinsin4522ADADBB10. 2010 辽宁文数17 本小题总分值12 分在ABC中,abc、 、分别为内角ABC、 、的对边,且2 sin(2)sin(2)sinaAbcBcbC求A的大小;假设sinsin1BC,试判断ABC的形状 . 解: 由已知,根据正弦定理得cbcbcba)2()2(22即bccba222由余弦定理得Abccbacos2

22、222故120,21cosAA由得.sinsinsinsinsin222CBCBA又1sinsinCB,得21sinsinCB因为900,900CB,故BC所以ABC是等腰的钝角三角形。11. 2010 辽宁理数17 本小题总分值12 分在 ABC中, a, b, c分别为内角A, B, C的对边,且2 sin(2)sin(2)sin.aAacBcbC求 A的大小;求sinsinBC的最大值 . 解: 由已知,根据正弦定理得22(2)(2)abc bcb c即222abcbc由余弦定理得2222cosabcbcA故1cos2A,A=120 6 分由得:sinsinsinsin(60)BCBB精

23、选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 14 页11 31cossin22sin(60)BBB故当 B=30时, sinB+sinC取得最大值1。补充:海伦公式:有一个三角形,边长分别为a、b、c,三角形的面积S 可由以下公式求得:而公式里的p 为半周长周长的一半:基本关系转化:倒数关系:;商的关系:平方关系:;和差角公式精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 14 页12 和差化积口诀:正加正,正在前,余加余,余并肩正减正,余在前,余减余,负正弦积化和差倍角公

24、式二倍角三倍角三倍角公式推导sin 3a) 3sina -4sin3a=sin(a+2a) 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 12 页,共 14 页13 =sin2acosa+cos2asina =2sina 1-sin2a)+ 1-2sin2a)sina =3sina-4sin3a cos3a4cos3a-3cosa=cos 2a+a) =cos2acosa-sin2asina =2cos2a-1 cosa-2 1-cos2a)cosa =4cos3a-3cosa sin3a 4si nasin 60 +a)sin 60 -a)=3

25、sina-4sin3a =4sina 3/4-sin2a) =4sina 3/2 -sina 3/2 +sina =4sina(sin60+sina)(sin60-sina) =4sina*2sin 60+a)/2cos 60 -a)/2*2sin 60 -a)/2cos 60 +a)/2 =4sinasin 60 +a)sin 60 -a) cos3a4cosacos60 -a)cos 60 +a)=4cos3a-3cosa =4cosa(cos2a-3/4=4cosacos2a-3/2 2 =4cosa(cosa-cos30 (cosa+cos30 =4cosa*2cos(a+30 /2c

26、os(a-30/2*-2sin(a+30/2sin(a-30/2 =-4cosasin(a+30 sin(a-30=-4cosasin90-60 -a)sin-90+60 +a) =-4cosacos 60 -a)-cos 60 +a) =4cosacos 60 -a)cos 60 +a) tan3a tanatan 60 -a)tan 60 +a)上述两式相比可得tan3a=tanatan 60 -a)tan 60 +a) 三倍角sin3 =3sin -4sin3 =4sin sin/3+ sin/3- cos3=4cos3 -3cos=4cos cos/3+ cos /3 - tan3 =tan *(-3+tan 2/(-1+3*tan 2=tan a tan /3+a tan/3 -a) 半角公式精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 13 页,共 14 页14 正负由所在的象限决定万能公式精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 14 页,共 14 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 技术总结

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁