《2022年小学数学六年级下册圆柱和圆锥锥 2.pdf》由会员分享,可在线阅读,更多相关《2022年小学数学六年级下册圆柱和圆锥锥 2.pdf(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、圆柱和圆锥第一部分基础部分一、圆柱和圆锥的认识1、图形的形成圆柱是以长方形的一边为轴旋转而得到的,也可以由长方形(或正方形 )卷曲而得到;圆锥是以直角三角形的一直角边为轴旋转而得到的,圆锥也可以由扇形卷曲而得到。2、高的条数: 圆柱有无数条高;圆锥只有一条高3、侧面展开图圆柱:沿着高展开 , 展开图形是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时(h=2R) ,侧面沿高展开后是一个正方形,展开图形为正方形。圆锥:侧面展开得到一个扇形4、图形的形成:(1)圆柱:卷曲: 也可以由长方形(或 正方形 )卷曲而得到;旋转: 圆柱是以长方形的一边为轴旋转而得到的(2
2、)圆锥:卷曲: 也可以由扇形卷曲而得到;旋转: 以直角三角形的一条直角边为轴旋转得到【例 1】 :下面()图形是圆柱的展开图。 (单位: cm )【易错题】 一个圆柱的侧面沿高展开是一个长12.56CM ,宽 6.28CM的长方形,求这个圆柱的底面半径。【例 2】在下图中,以直线为轴旋转,可以得出圆柱体的是()【易错题】 1、把长为 5cm.宽为 3cm的长方形旋转成一个圆柱,则这个圆柱的表精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 11 页面积是多少平方厘米?2、把两条直角边分别是5cm和 3cm的直角三角形旋转成一个圆锥,这个圆
3、锥的体积是多少立方厘米?【练习: 】一、选择1、圆柱侧面积的大小是由()决定的。A 圆柱的底面周长B 底面直径和高C 圆柱的高。2、下面的材料中,()能做成圆柱。1 号2 号3 号4 号5号A.1 号、2 号和 3 号B.1 号、4 号和 5 号C.1 号、2 号和 4 号二、解答题一个长为 8m,宽为 6m 的长方形旋转成一个圆柱,它的侧面积是多少平方米?二、圆柱表面积的计算方法公式: 圆柱的表面积 S表=S侧+S底2=2rh + 2 r2圆柱表面积计算公式的运用运用 1:已知圆柱的底面半径和高,求圆柱的表面积;12cm 6.28cm 2cm 2cm 4cm 4cm 精选学习资料 - - -
4、 - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 11 页运用 2:已知圆柱的底面直径和高,求圆柱的表面积;运用 3:已知圆柱的底面周长和高求圆柱的表面积。拓展提升:运用 4:已知侧面积和高求圆柱的表面积【例】 一个圆柱的侧面积是94.2cm2,高是 10cm,求它的表面积。运用 5:已知底面积和高求圆柱的表面积【例】 一个圆柱的底面积是12.56m2,高是 5cm,求它的表面积。【练习】 :1、一个圆柱的侧面积是62.8cm2,高是 10cm ,这个圆柱的表面积是多少平方厘米?2、一个圆柱的底面积是28.26cm2,高是 10cm ,这个圆柱的表面积是多少平方
5、厘米?根据实际情况计算圆柱的表面积常见的圆柱解决问题 :、压路机压过路面面积、烟囱、教学楼里的支撑柱、通风管、出水管(求侧面积) ;、压路机压过路面长度(求底面周长) ;、水桶铁皮(求侧面积和一个底面积) ;鱼缸、厨师帽(求侧面积和一个底面积);练习:1、选择: 在手工课上小明用纸板做一个圆柱形笔筒,要求出小明用了多少平方厘米纸板,实际上就是求这个笔筒的()A.侧面积 B.侧面积 +2个底面积 C.侧面积+1 个底面积2、生活运用题: 祈年殿是北京天坛公司的主要建筑,中央4 根龙柱高 19.2 米。直径是 1.2 米,象征四季。 如果把每根龙柱的表面刷一层油漆,粉刷的面积是多少平方米?三、圆柱
6、和圆锥的体积精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 11 页1、圆柱: V柱Sh =r2h 圆柱体积公式的推导:把圆柱平均分成若干个扇形, 然后拼成一个近似的长方体, 长方体的长等于圆柱() ,长方体的宽等于圆柱() ,长方体的高等于圆柱的() ;V柱 = 【体积公式推导的应用 】1、把一个圆柱底面平均分成若干个扇形,沿高切开拼成一个近似长方体,这个长方体的长是 6.28 厘米,高是 5 厘米,求它的体积。2、一个圆柱体的体积是50.24立方厘米,底面半径是2 厘米将它的底面平均分成若干个扇形后, 再截开拼成一个和它等底等高的长
7、方体,表面积增加了多少平方厘米? ( 3.14) 考试常见题型:a 已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长b 已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积c 已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积d 已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积,e 已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积f 、V钢管= 【例 1】 :计算下面各圆柱体的体积。A、底面积是 1.25 平方米,高 3 米。 B、底面直径和高都是8 分米。C、底面半径和高都是8 分米。 D、底面周长是 12.56 米,高 2 米。【例 2】 求下
8、面立体图形的体积,以及制作这么一个物体所用的铁皮面积。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 11 页2、圆锥: V锥=31底面积高31Sh 31r2h圆锥体积的推导:(注意: 等底等高 的圆柱和圆锥。)V锥= = 考试常见题型:a 已知圆锥的底面积和高,求体积b 已知圆锥的底面周长和高,求圆锥的体积,底面积c 已知圆锥的底面周长和体积,求圆锥的高,底面积【例】 :1、求下列圆锥体积(1)底面积是 7.8 平方米,高是 1.8 米 (2)底面半径 4 厘米,高 21 厘米(3)底面周长是 12.56 米,高 4 米第二部分典型题
9、型总结一、巧求表面积1、组合图形的表面积 =【例】 如图所示,将高都是1 米,底面半径分别为1.5 米、1 米和 0.5 米的三个圆柱组成一个物体。求这个物体的表面积。1110.511.52、挖空问题【例】 有一个圆柱体的零件,高10 厘米,底面直径是 6 厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4 厘米,孔深 5 厘米(见右图)。如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 11 页3、不规则物体的表面积和体积【例】 求下面物体的侧面积和体积(单位:厘米)练习
10、:1、一个底面直径是 6 厘米,高为 8 厘米的圆柱体,叠在底面直径是12 厘米、高是 12 厘米的圆柱体上,求这个物体的表面积。2、一个棱长为 40 厘米的正方体零件(如图27-11 所示)的上、下两个面上,各有一个直径为 4 厘米的圆孔,孔深为10 厘米。求这个零件的表面积。3、求下图的侧面积和体积。 (单位:米)二、等量转换问题:【例】 两个底面积相等的圆柱,一个圆柱的高是7 分米,体积是 54 立方分米,另一个圆柱的高 5 分米,另一个圆柱的体积是多少立方分米?练习:1、一个圆锥形沙堆, 底面周长是 12.56 米,高是 4.8 米,用这堆沙在 10 米宽的公路上铺 2 厘米厚,能铺多
11、少米长?精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 11 页2、把一个底面半径是6 厘米,高是 10 厘米的圆锥形容器灌满水, 然后把水倒入一个底面半径是 5 厘米的圆柱形容器里,求圆柱形容器内水面的高度?三、圆柱和圆锥的关系(1)等底等高: V锥:V 柱1:3 ;圆柱体积比等底等高圆锥体积多2 倍;圆锥体积比等底等高圆柱体积少32(2)等底等体积: h 锥:h 柱3:1 (3)等高等体积: S锥:S 柱3:1 方法总结: 1、等底等高时: 圆柱体积是圆锥体积的3 倍 2、等体积等高(或底)时:圆锥的底(或高)是圆柱的3 倍【例 1
12、】一个圆柱体和一个圆椎体的底面积和高相等,已知圆柱体的体积是7.8立方米,那么圆椎体的体积是()立方米【例 2】一个圆柱体和一个圆锥体等底等高,它们的体积相差50.24 立方厘米。如果圆锥体的底面半径是2 厘米,这个圆锥体的高是多少厘米?【例 3】一个圆锥的体积与它等底等高的圆柱的体积的和是24cm3 ,这个圆柱的体积是()【例 4】一个圆柱体和一个圆椎体的底面积和体积相等,圆柱的高是12cm ,圆锥的高是() 。【例 5】一个圆柱体和一个圆椎体的体积和高相等,圆锥的底面积是12 平方米,圆柱的底面积是()练习:1、 把一段圆柱形的木料削成一个最大的圆锥,削去部分体积是圆锥体积的 ()2、一个
13、圆锥的体积比与它等底等高的圆柱的体积少54cm3 ,这个圆柱的体积是()3、一个体积是 24 立方米,底面积是 8 平方米的圆柱与一个圆锥等体积等高,圆锥的底面积是()米,四、比例扩大缩小问题核心思想:运用公式解决比例问题【例1】圆锥的底面积扩大 2倍,高不变,它的体积()【例 2】有两个底面半径相等的圆柱,高的比是2:5。第二个圆柱的体积是175立方厘米,第二个圆柱的体积比第一个圆柱多多少立方厘米?【例 3】甲乙两个圆柱, 底半径比是 2:3, 高的比是 4:5, 它们的体积比是多少?练习:1、圆锥的底面半径和高都缩小2倍,它的体积就()精选学习资料 - - - - - - - - - 名师
14、归纳总结 - - - - - - -第 7 页,共 11 页2、圆柱的底面直径扩大2 倍,高缩小为原来的1/2 ,那么圆柱的侧面积()3、甲乙两个圆柱体积是5:6, 高的比是 2:3, 求它们的底面积比。五、表面积的变化1、高的变化导致表面积的变化【例】一个圆柱高 20 厘米,如果把高减少3 厘米,它的表面积就减少31.68 平方厘米,求原来圆柱的体积。变式引申: 一个圆柱高为 15 厘米,把它的高增加2 厘米后表面积增加25.12 平方厘米,求原来圆柱的体积。2、图形的切割和组合核心思想: 切一刀,增加个面。横切: 横截面是形;竖切: 横截面是形。【例 1】一根圆柱形木料,底面直径是2dm,
15、高是 10dm,如果沿底面直径纵切成相等的两块,其中一块的表面积是多少?【例 2】一个圆柱体木块,底面半径是6 厘米,高是 10 厘米,现将它截成两个圆柱体小木块,则表面积要增加多少平方厘米?【例 3】把一根长 1 米的圆柱形钢材截成四段后, 表面积比原来增加20 平方分米,这根钢材原来的体积是多少?练习:1、一个底面周长是 9.42cm,高是 5cm的圆柱,沿底面直径把它切割成两个半圆柱后,切割面的面积一共是多少平方厘米?2、把一根直径 20 厘米的圆柱形木头锯成3 段,表面积要增加多少 ? 3、一根圆柱形钢材, 截下 1米。量的它的横截面的直径是20 厘米,截下的体积是多少立方分米?精选学
16、习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 11 页4、把一根长 1.5 米的圆柱形钢材截成三段后, 表面积比原来增加9.6 平方分米,这根钢材原来的体积是多少?六、削成最大体积的问题:正方体里削出最大的圆柱圆锥圆柱圆锥的高和底面直径等于正方体棱长长方体里削出最大的圆柱圆锥圆柱圆锥底面直径等于宽(宽高 )圆柱圆锥高等于长方体高【例 1】一个圆柱体木块,底面直径和高都是10 厘米,若把它加工成一个最大的圆锥,这个圆锥的体积是多少立方厘米?【例 2】把一个棱长是40 厘米的正方体削成一个最大的圆柱体,它的表面积和体积各是多少?(下面 2 题)
17、【例 3】一个长方体木块,长10 厘米宽 8 厘米高 4 厘米,把它削成一个圆柱,求削成圆柱体积最大是多少?练习: 在一个长为 12 米,宽是 8 米,高是 6 米的长方体木块里削一个最大的圆柱,求这个圆柱体积最大是多少?七、等积转换问题【例】 有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是30 分米3。现在瓶中装有一些饮料,正放时饮料高度为20 厘米,倒放时空余部分的高度为5 厘米(见右图)。问:瓶内现有饮料多少立方分米?练习:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 11 页1、一个盖着瓶盖的瓶子里面装着一些水,瓶底面积为1
18、0平方厘米,请你根据图中标明的数据,计算瓶子的容积是多少?7cm4cm5cm2、一个酒精瓶,它的瓶身呈圆柱形( 不包括瓶颈 ),如图已知它的容积为26.4立方厘米当瓶子正放时,瓶内的酒精的液面高为6 厘米;瓶子倒放时,空余部分的高为 2 厘米问:瓶内酒精的体积是多少立方厘米?合多少升?26八、注水问题(1、水管每分钟流水的体积2、水流体积与盛器体积的比)【例】自来水管的内直径是2 厘米,水管内水的流速是每秒8 厘米。一位同学去水池洗手,走时忘记关掉水龙头,4 分钟浪费多少升水 ? 练习:游乐中心内一长方形儿童游泳池,长25m,宽 12.5m,深 1.2m,如果用直径24cm的进水管向游泳池里注
19、水,水流速度按每分钟100 米计算,注满一池水要多长时间?九、浸水体积问题1、完全浸没问题【例】一个圆柱形玻璃缸,底面直径20 厘米,把一个钢球放入水中,缸内水面上升了 2 厘米,求这个钢球的体积。变式引申: 一个圆柱形量桶, 底面半径是 5 厘米,把一块铁块从这个量桶里取出后,水面下降 3 厘米,这块铁块的体积是多少?2、不完全浸没问题精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 11 页【例 1】有一个高和底面直径都是8 厘米的圆柱形容器,里面装满了水,现在把长 16 厘米的圆钢垂直放入,使圆钢的底面和容器使圆钢的底面和容器的底面接触,这是有一部分水溢出,当把圆钢拿起后,容器中水的高度为6 厘米,求圆钢的体积。【例 2】一个圆柱形容器,底面半径9 厘米,里面装有 3.6 厘米深的水。现将一根底面半径 3 厘米,长 15 厘米的圆柱形铁条竖直插入这个容器底部(铁条未被完全淹没),这时水面的高度是多少?练习:一个长 10厘米,宽8厘米,高15厘米的长方体玻璃容器,里面盛了5厘米深的水。如果将一个长 4厘米,宽 1厘米,高为 6厘米的长方体铁块放入水中,则水面上升多少厘米?精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 11 页