2022年高二立体几何与直线方程的知识点总结 .pdf

上传人:Q****o 文档编号:25450031 上传时间:2022-07-11 格式:PDF 页数:6 大小:358.66KB
返回 下载 相关 举报
2022年高二立体几何与直线方程的知识点总结 .pdf_第1页
第1页 / 共6页
2022年高二立体几何与直线方程的知识点总结 .pdf_第2页
第2页 / 共6页
点击查看更多>>
资源描述

《2022年高二立体几何与直线方程的知识点总结 .pdf》由会员分享,可在线阅读,更多相关《2022年高二立体几何与直线方程的知识点总结 .pdf(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、学习必备欢迎下载立体几何初步1、 柱、锥、台、球的结构特征2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右) 、俯视图(从上向下)注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。3、空间几何体的直观图斜二测画法斜二测画法特点:原来与 x 轴平行的线段仍然与x 平行且长度不变;原来与y 轴平行的线段仍然与y 平行,长度为原来的一半。4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的

2、和。(2)特殊几何体表面积公式(c 为底面周长,h 为高,h为斜高, l 为母线)lrrS2圆柱表lrrS圆锥表22RRlrlrS圆台表(3)柱体、锥体、台体的体积公式VSh柱,2VShr h圆柱,13VSh锥,hrV231圆锥1()3VSS SS h台2211()()33VSSSS hrrRRh圆台(4)球体的表面积和体积公式:34=3VR球;24SR=球面精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 6 页学习必备欢迎下载二 、点、直线、平面之间的关系(一) 、立体几何网络图:1、线线平行的判断:(1) 、平行于同一直线的两直线平

3、行。(3) 、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。(6) 、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。(12) 、垂直于同一平面的两直线平行。2、线线垂直的判断:(7) 、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。(8) 、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。(10) 、若一直线垂直于一平面,这条直线垂直于平面内所有直线。补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。3、线面平行的判断:(2) 、如果平面外的一条直线和平面内的一

4、条直线平行,那么这条直线和这个平面平行。(5) 、两个平面平行,其中一个平面内的直线必平行于另一个平面。判定定理:性质定理:判断或证明线面平行的方法 利用定义 (反证法 ): l I,则 l (用于判断 ); 利用判定定理:线线平行线面平行(用于证明 ); 利用平面的平行:面面平行线面平行(用于证明 ); 利用垂直于同一条直线的直线和平面平行(用于判断 )。2 线面斜交和线面角:l = A 2.1 直线与平面所成的角 (简称线面角 ): 若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角 。2.2 线面角的范围: 0 ,90 注意:当直线在平面内或者直线平行于平面时,=0;当直线垂直于平

5、面时, =904、线面垂直的判断:如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。如果两个平面垂直,那么在个平面内垂直于交线的直线必垂直于另个平面。公理 4 线线平行线面平行面面平行线线垂直线面垂直面面垂直三垂线逆定理三垂线定理图 2-3 线面角精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 6 页学习必备欢迎下载判定定理:性质定理:(1)若直线垂直于平面,则它垂直于平面内任意一条直线。即:(2)垂

6、直于同一平面的两直线平行。即:判断或证明线面垂直的方法 利用定义,用反证法证明。 利用判定定理证明。 一条直线垂直于平面而平行于另一条直线,则另一条直线也垂直与平面。 一条直线垂直于两平行平面中的一个,则也垂直于另一个。 如果两平面垂直,在一平面内有一直线垂直于两平面交线,则该直线垂直于另一平面。1.5 三垂线定理及其逆定理 斜线定理:从平面外一点向这个平面所引的所有线段中,斜线相等则射影相等,斜线越长则射影越长,垂线段最短。如图: 三垂线定理及其逆定理已知 PO ,斜线 PA在平面 内的射影为 OA,a 是平面 内的一条直线。 三垂线定理: 若 aOA,则 aPA。即垂直射影则垂直斜线。 三

7、垂线定理逆定理: 若 aPA,则 aOA。即垂直斜线则垂直射影。 三垂线定理及其逆定理的主要应用 证明异面直线垂直; 作出和证明二面角的平面角; 作点到线的垂线段。5、面面平行的判断:一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行。垂直于同一条直线的两个平面平行。6、面面垂直的判断:一个平面经过另一个平面的垂线,这两个平面互相垂直。判定定理:性质定理: 若两面垂直,则这两个平面的二面角的平面角为90 ;(2)(3)(4)图 2-7 斜线定理图 2-8 三垂线定理图 2-10 面面垂直性质2 图 2-11 面面垂直性质3 精选学习资料 - - - - - - - - - 名师归纳总

8、结 - - - - - - -第 3 页,共 6 页学习必备欢迎下载(二) 、其他定理:(1)确定平面的条件:不公线的三点;直线和直线外一点;相交直线;(2)直线与直线的位置关系:相交 ; 平行 ; 异面 ;直线与平面的位置关系:在平面内; 平行; 相交(垂直是它的特殊情况);平面与平面的位置关系:相交 ; ; 平行 ;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角 ( 或直角 )相等;(4)射影定理(斜线长、射影长定理) :从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较

9、长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短。(5)最小角定理:斜线与平面内所有直线所成的角中最小的是与它在平面内射影所成的角。(6)异面直线的判定:反证法;过平面外一点与平面内一点的直线,和平面内不过该点的直线是异面直线。(7)过已知点与一条直线垂直的直线都在过这点与这条直线垂直平面内。(8)如果直线平行于两个相交平面,那么这条直线平行于两个平面的交线。(三) 、唯一性定理:(1)过已知点,有且只能作一直线和已知平面垂直。(2)过已知平面外一点,有且只能作一平面和已知平面平行。(3)过两条异面直线中的一条能且只能作一平面与另一条平行。四、空

10、间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形)(1)异面直线所成的角:通过直线的平移,把异面直线所成的角转化为平面内相交直线所成的角。异面直线所成角的范围:oo900;(2)线面所成的角: 线面平行或直线在平面内:线面所成的角为o0; 线面垂直:线面所成的角为o90;斜线与平面所成的角: 范围oo900;即也就是斜线与它在平面内的射影所成的角。线面所成的角范围090oo(3)二面角: 关键是找出二面角的平面角。方法有:定义法;三垂线定理法;垂面法;二面角的平面角的范围:0180oo;五、距离的求法:(1)点点、点线、点面距离:点与点之间的距离就是两点之间线段的长、点

11、与线、面间的距离是点到线、面垂足间线段的长。求它们首先要找到表示距离的线段,然后再计算。注意:求点到面的距离的方法:直接法:直接确定点到平面的垂线段长(垂线段一般在二面角所在的平面上);转移法:转化为另一点到该平面的距离(利用线面平行的性质);体积法:利用三棱锥体积公式。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 6 页学习必备欢迎下载第三章 直线与方程1、直线的倾斜角与斜率(1)直线的倾斜角关于倾斜角的概念要抓住三点:. 与 x 轴相交 ; .x 轴正向 ; . 直线向上方向 . 直线与 x 轴平行或重合时 , 规定它的倾斜角为0

12、0. 倾斜角的范围000180. 0,900k;0,18090k(2)直线的斜率直线的斜率就是直线倾斜角的正切值,而倾斜角为090的直线斜率不存在。经 过两 点),(),(222111yxPyxP(21xx) 的 直 线 的 斜 率 公 式 是1212xxyyk(21xx)每条直线都有倾斜角,但并不是每条直线都有斜率。2、两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线12,l l,其斜率分别为12,k k,则有1212/ /llkk。特别地,当直线12,l l的斜率都不存在时,12ll与的关系为平行。(2)两条直线垂直如果两条直线12,l l斜率存在,设为12,k k,则121

13、21llk k二、直线的方程1、直线方程的几种形式名称方程的形式已知条件局限性点斜式)(11xxkyy),(11yx为直线上一定点,k 为斜率不包括垂直于 x 轴的直线斜截式bkxyk 为斜率, b 是直线在y轴上的截距不包括垂直于 x 轴的直线两点式121121xxxxyyyy),(2121yyxx其中),(),(2211yxyx是 直 线 上两定点不包括垂直于 x 轴和 y 轴的直线截距式1byaxa是直线在 x 轴上的非零截距, b 是直线在 y 轴上的非零截距不包括垂直于 x 轴和 y轴或过原点的直线一般式0CByAx)不同时为其中0,(BAA, B , C 为系数无限制,可表示任何位

14、置的直线2、线段的中点坐标公式若 两 点),(),(222111yxPyxP, 且 线 段21,PP的 中 点 M 的 坐 标 为),(yx, 则222121yyyxxx精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 6 页学习必备欢迎下载 3. 过定点的直线系斜率为 k 且过定点),(00yx的直线系方程为)(00 xxkyy;过两条直线0:1111CyBxAl, 0:2222CyBxAl的交点的直线系方程为0)(222111CyBxACyBxA(为参数) ,其中直线 l2不在直线系中 . 三、直线的交点坐标与距离公式1. 两条直线的

15、交点设两条直线的方程是0:1111CyBxAl, 0:2222CyBxAl两条直线的交点坐标就是方程组00222111CyBxACyBxA的解,若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立。2. 几种距离(1)两点间的距离平面上的两点),(),(222111yxPyxP间的距离公式21221221)()(yyxxPP特别地,原点)0,0(O与任一点),(yxP的距离22yxOP(2)点到直线的距离点),(00yxP到直线0:CByAxl的距离2200BACByAxd(3)两条平行线间的距离两条平行线0:11CByAxl

16、, 0:22CByAxl间的距离2212BACCd补充:1、直线的倾斜角与斜率2、利用斜率证明三点共线的方法:已知112233(,),(,),(,),A x yB xyC xy若123ABACxxxkk或,则有 A、B、C三点共线。注:斜率变化分成两段,090是分界线,遇到斜率要谨记,存在与否需讨论。3. 两条直线位置关系的判定:已知0:11CByAxl, 0:22CByAxl,如果2220A B C时,则:(1)1221121BABAll(2)21/ ll)不为 0,(222212121CBACCBBAA;(3)1l与2l重合)不为 0,(222212121CBACCBBAA(4)1l与2l相交)不为 0,(222121BABBAA精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 6 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 技术总结

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁