2022年四川乐山市中考数学试卷解析 .pdf

上传人:Che****ry 文档编号:25440974 上传时间:2022-07-11 格式:PDF 页数:22 大小:736.90KB
返回 下载 相关 举报
2022年四川乐山市中考数学试卷解析 .pdf_第1页
第1页 / 共22页
2022年四川乐山市中考数学试卷解析 .pdf_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《2022年四川乐山市中考数学试卷解析 .pdf》由会员分享,可在线阅读,更多相关《2022年四川乐山市中考数学试卷解析 .pdf(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、四川省乐山市中考数学试卷解析一、选择题:本大题共10 小题,每小题3 分,共 30 分.在每小题给出的四个选项中,只有一个选项符合题目要求.1 (2012?乐山)如果规定收入为正,支出为负收入500 元记作 500 元,那么支出237 元应记作()A 500 元B 237 元C 237 元D500 元考点 :正数和负数。分析: 根据题意 237 元应记作 237 元解答: 解:根据题意,支出237 元应记作 237 元故选 B点评: 此题考查用正负数表示两个具有相反意义的量,属基础题2 (2012?乐山) 如图是小强用八块相同的小正方体搭建的一个积木,它的左视图是()ABCD考点 :简单组合体

2、的三视图。分析: 左视图从左往右,2 列正方形的个数依次为2,1,依此画出图形即可求出答案解答: 解:左视图从左往右,2 列正方形的个数依次为2,1;依此画出图形故选 C点评: 此题主要考查了画三视图的知识;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形3 ( 2012?乐山)计算(x)3 ( x)2的结果是()A xB xC x5Dx5考点 :整式的除法。分析: 本题需先根据整式的除法法则和顺序进行计算即可求出正确答案解答: 解: ( x)3 ( x)2= x3 x2=x;故选 A精选学习资料 - - - - - - - - - 名师归纳总结 - - - -

3、 - - -第 1 页,共 22 页点评: 本题主要考查了整式的除法,在解题时要注意运算顺序和结果的符号是本题的关键4 ( 2012?乐山)下列命题是假命题的是()A平行四边形的对边相等B四条边都相等的四边形是菱形C矩形的两条对角线互相垂直D等腰梯形的两条对角线相等考点 :等腰梯形的性质;平行四边形的性质;菱形的判定;矩形的性质;命题与定理。分析: 根据等腰梯形的性质、平行四边形的性质、菱形的性质、矩形的性质及菱形的判定方法做出判断即可解答: 解:A、平行四边形的两组对边平行,正确,是真命题;B、四条边都相等的四边形是菱形,正确,是真命题;C、矩形的对角线相等但不一定垂直,错误,是假命题;D、

4、等腰梯形的两条对角线相等,正确,是真命题;故选 C点评: 本题考查了等腰梯形的性质、平行四边形的性质、菱形的性质、矩形的性质及菱形的判定方法,属于基本定义,必须掌握5 ( 2012?乐山)如图,在RtABC 中, C=90 ,AB=2BC ,则 sinB 的值为()ABCD1 考点 :特殊角的三角函数值。分析: 根据 AB=2BC 直接求 sinB 的值即可解答: 解: RtABC 中, C=90 ,AB=2BC ,sinA=; A=30 B=60sinB=故选 B点评: 本题考查了锐角三角函数的定义,解决本题时,直接利用正弦的定义求解即可6 (2012?乐山) O1的半径为3 厘米, O2的

5、半径为2 厘米,圆心距O1O2=5 厘米,这两圆的位置关系是()A内含B内切C相交D外切精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 22 页考点 :圆与圆的位置关系。分析: 由O1的半径为3 厘米, O2的半径为2 厘米,圆心距O1O2=5 厘米,根据两圆位置关系与圆心距d,两圆半径R,r 的数量关系间的联系即可得出两圆位置关系解答: 解: O1的半径 r=3, O2的半径 r=2,3+2=5,两圆的圆心距为O1O2=5,两圆的位置关系是外切故选 D点评: 此题考查了圆与圆的位置关系解题的关键是熟记两圆位置关系与圆心距d,两圆半径

6、R,r 的数量关系间的联系7 (2012?乐山)如图, A、 B 两点在数轴上表示的数分别为a、b,下列式子成立的是()Aab0B a+b0C (b 1) (a+1) 0D (b1) (a1) 0 考点 :数轴;有理数的混合运算。专题 :存在型。分析: 根据 a、b 两点在数轴上的位置判断出其取值范围,再对各选项进行逐一分析即可解答: 解:a、 b 两点在数轴上的位置可知:1a0,b1,ab0,a+b 0,故 A、B 错误; 1 a0,b1,b10,a+10, a10 故 C 正确, D 错误故选 C点评: 本题考查的是数轴的特点,根据a、 b 两点在数轴上的位置判断出其取值范围是解答此题的关

7、键8 ( 2012?乐山)若实数a、b、c 满足 a+b+c=0,且 abc,则函数y=ax+c 的图象可能是()ABCD考点 :一次函数图象与系数的关系。专题 :常规题型。分析: 先判断出 a是负数, c 是正数,然后根据一次函数图象与系数的关系确定图象经过的象限以及与y 轴的交点的位置即可得解解答: 解: a+b+c=0,且 abc,a0,c0, (b 的正负情况不能确定) ,a0,则函数y=ax+c 图象经过第二四象限,精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 22 页c0,则函数y=ax+c 的图象与y 轴正半轴相交,纵观

8、各选项,只有A 选项符合故选 A点评: 本题主要考查了一次函数图象与系数的关系,先确定出a、c 的正负情况是解题的关键,也是本题的难点9 ( 2012?乐山)如图,在ABC 中, C=90 ,AC=BC=4 ,D 是 AB 的中点,点E、F 分别在 AC、BC 边上运动(点E 不与点 A、C 重合),且保持 AE=CF ,连接 DE、DF、EF在此运动变化的过程中,有下列结论: DFE 是等腰直角三角形; 四边形 CEDF 不可能为正方形; 四边形 CEDF 的面积随点E 位置的改变而发生变化; 点 C 到线段 EF 的最大距离为其中正确结论的个数是()A1 个B2 个C3 个D4 个考点 :

9、全等三角形的判定与性质;等腰直角三角形。分析: 作常规辅助线连接CD,由 SAS 定理可证 CDF 和 ADE 全等,从而可证EDF=90 ,DE=DF 所以 DFE 是等腰直角三角形; 当 E 为 AC 中点, F 为 BC 中点时,四边形CEDF 为正方形; 由割补法可知四边形CDFE 的面积保持不变; DEF 是等腰直角三角形DE=EF,当 DF 与 BC 垂直,即 DF 最小时, FE 取最小值 2 ,此时点C 到线段 EF 的最大距离解答: 解: 连接 CD; ABC 是等腰直角三角形, DCB= A=45 ,CD=AD=DB ;AE=CF , ADE CDF;ED=DF , CDF

10、=EDA ; ADE+ EDC=90 , EDC+ CDF= EDF=90 , DFE 是等腰直角三角形故此选项正确; 当 E、F 分别为 AC、BC 中点时,四边形CDFE 是正方形,故此选项错误; 如图 2 所示,分别过点D,作 DM AC ,DNBC,于点 M,N,可以利用割补法可知四边形CDFE 的面积等于正方形CMDN 面积,故面积保持不变;故此选项错误;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 22 页 DEF 是等腰直角三角形DE=EF,当 DF 与 BC 垂直,即DF 最小时, FE 取最小值2 ,此时点 C 到线

11、段 EF 的最大距离为故此选项正确;故正确的有2 个,故选: B点评: 此题主要考查了全等三角形的判定与性质以及正方形、等腰三角形、 直角三角形性质等知识,根据图形利用割补法可知四边形CDFE 的面积等于正方形CMDN 面积是解题关键10 (2012?乐山)二次函数y=ax2+bx+1(a 0) 的图象的顶点在第一象限,且过点( 1, 0) 设t=a+b+1,则 t 值的变化范围是()A0t1B 0t2C1t2D 1t1 考点 :二次函数图象与系数的关系。分析: 由二次函数的解析式可知,当x=1 时,所对应的函数值y=t=a+b+1 把点( 1,0)代入 y=ax2+bx+1,ab+1=0,然

12、后根据顶点在第一象限,可以画出草图并判断出a与 b 的符号,进而求出t=a+b+1 的变化范围解答: 解:二次函数y=ax2+bx+1 的顶点在第一象限,且经过点( 1,0) ,易得: ab+1=0,a0,b0,由 a=b1 0得到 b1,结合上面b0,所以 0b1 ,由 b=a+10 得到 a 1,结合上面a 0,所以 1a0 ,由 得: 1a+b1,且 c=1,得到 0a+b+12,0t2故选: B精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 22 页点评: 此题考查了点与函数的关系,解题的关键是画草图,利用数形结合思想解题二、填

13、空题:本大题共6 小题,每小题3 分,共 18 分.11 (2005?湘潭)计算: |=考点 :绝对值。分析: 绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是 0解答:解:根据负数的绝对值是它的相反数,得|=点评: 考查了绝对值的性质12从棱长为2 的正方体毛坯的一角,挖去一个棱长为1 的小正方体, 得到一个如图所示的零件,则这个零件的表面积为24考点 :几何体的表面积。分析: 本题考查整体的思想及简单几何体表面积的计算能力从正方体毛坯一角挖去一个小正方体得到的零件的表面积等于原正方体表面积解答: 解:挖去一个棱长为1cm 的小正方体,得到的图形与原图形表

14、面积相等,则表面积是 2 2 6=24故答案为: 24点评: 本题可以有多种解决方法,一种是把每个面的面积计算出来然后相加,这样比较麻烦,另一种算法就是解答中的这种,这种方法的关键是能想象出得到的图形与原图形表面积相等13 (2012?乐山)据报道,乐山市2011 年 GDP 总量约为91 800 000 000 元,用科学记数法表示这一数据应为9.18 1010元考点 :科学记数法 表示较大的数。分析: 科学记数法的形式为a 10n,其中 1 a10,n 为整数精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 22 页解答: 解:91

15、800 000 000=9.18 1010故答案是9.18 1010点评: 此题考查用科学记数法表示较大的数,其规律为1 a10,n 是比数的整数位数小1的正整数14 (2012?乐山)如图,O 是四边形ABCD 的内切圆, E、F、G、H 是切点,点P 是优弧上异于 E、H 的点若 A=50 ,则 EPH=65 考点 :切线的性质;圆周角定理。专题 :计算题。分析: 连接 OE,OH,由已知的 O 是四边形ABCD 的内切圆, E、F、G、H 是切点,根据切线的性质得到OEA= OHA=90 ,再由已知的 A 的度数,根据四边形的内角和为360 度,求出 EOH 的度数,最后根据同弧所对的圆

16、周角等于它所对圆心角度数的一半即可求出EPH 的度数解答: 解:如图,连接OE, OH, O 是四边形 ABCD 的内切圆, E、F、G、H 是切点, OEA= OHA=90 ,又 A=50 , EOH=360 OEA OHA A=360 90 90 50 =130 ,又 EPH 和 EOH 分别是所对的圆周角和圆心角, EPH=EOH= 130 =65 故答案为: 65点评: 此题考查了切线的性质,圆周角定理,四边形的内角和定理,在做有关圆的切线问题时,我们常常需要连接圆心和切点,利用切线的性质得到直角来解决问题精选学习资料 - - - - - - - - - 名师归纳总结 - - - -

17、- - -第 7 页,共 22 页15 (2012?乐山)一个盒中装着大小、外形一模一样的x 颗白色弹珠和y 颗黑色弹珠, 从盒中随机取出一颗弹珠,取得白色弹珠的概率是如果再往盒中放进12 颗同样的白色弹珠,取得白色弹珠的概率是,则原来盒中有白色弹珠4颗考点 :概率公式。分析:根据从盒中随机取出一颗棋子,取得白色棋子的概率是,可得方程=又由再往盒中放进12 颗白色棋子,取得白色棋子的概率是可得方程=联立即可求得 x 的值解答:解:取得白色棋子的概率是,可得方程=又由再往盒中放进12 颗白色棋子,取得白色棋子的概率是可得方程=,组成方程组解得:x=4,y=8 故答案为 4点评: 本题考查的是概率

18、的求法如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件 A 出现 m 种结果,那么事件A 的概率 P(A)=16 (2012?乐山)如图,ACD 是ABC 的外角, ABC 的平分线与 ACD 的平分线交于点 A1, A1BC 的平分线与 A1CD 的平分线交于点A2, , An1BC 的平分线与 An1CD 的平分线交于点An设 A= 则:(1) A1=;(2) An=考点 :三角形内角和定理;三角形的外角性质。专题 :规律型。分析:(1)根据角平分线的定义可得A1BC=ABC ,A1CD=ACD ,再根据三角形的一个外角等于与它不相邻的两个内角的和可得ACD= A+ ABC ,

19、精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 22 页A1CD=A1BC+A1,整理即可得解;(2)与( 1)同理求出 A2,可以发现后一个角等于前一个角的,根据此规律再结合脚码即可得解解答: 解: (1) A1B 是 ABC 的平分线, A2B 是 A1BC 的平分线, A1BC=ABC , A1CD=ACD ,又 ACD= A+ ABC , A1CD=A1BC+ A1,( A+ ABC )= ABC+ A1, A1=A, A= , A1=;(2)同理可得A2=A1,=? =,所以 An=故答案为:(1), (2)点评: 本题主要考

20、查了三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质然后推出后一个角是前一个角的一半是解题的关键三、本大题共3小题,每小题9 分,共 27 分.17化简: 3(2x2 y2) 2( 3y22x2) 考点 :整式的加减。分析: 熟练运用去括号法则去括号,然后合并同类项注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变解答: 解:3( 2x2y2) 2(3y22x2)=6x23y26y2+4x2=10 x2 9y2点评: 关键是去括号 不要漏乘; 括号前面是 “ ” ,去括号后括号里面的各项都要变号18 (20

21、12?乐山)解不等式组,并求出它的整数解的和精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 22 页考点 :解一元一次不等式组;一元一次不等式组的整数解。分析: 分别求出各不等式的解集,在数轴上表示出来,其公共部分即为不等式组的解集,在其解集范围内找出x 的整数值,求出其和即可解答:解:解不等式 ,得 x3,解不等式 ,得 x 4在同一数轴上表示不等式的解集,得这个不等式组的解集是4 x3,这个不等式组的整数解的和是4 321+0+1+2= 7点评: 本题考查的是解一元一次不等式组及一元一次不等式组的整数解,能利用数形结合求不等式组的解

22、集是解答此题的关键19 (2012?乐山)如图,在10 10 的正方形网格中,每个小正方形的边长都为1,网格中有一个格点 ABC (即三角形的顶点都在格点上)(1)在图中作出ABC 关于直线l 对称的 A1B1C1; (要求: A 与 A1, B 与 B1,C 与 C1相对应)(2)在( 1)问的结果下,连接BB1,CC1,求四边形BB1C1C 的面积考点 :作图-轴对称变换。分析: (1)关于轴对称的两个图形,各对应点的连线被对称轴垂直平分做BM 直线 l于点 M,并延长到B1,使 B1M=BM ,同法得到A,C 的对应点A1,C1,连接相邻两点即可得到所求的图形;(2)由图得四边形BB1

23、C1C 是等腰梯形, BB1=4,CC1=2,高是 4,根据梯形的面积公式进行计算即可解答: 解(1)如图, A1B1C1是 ABC 关于直线l 的对称图形(2)由图得四边形BB1C1C 是等腰梯形,BB1=4,CC1=2,高是 4精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 22 页S四边形BB1C1C=,=12点评: 此题主要考查了作轴对称变换,在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是: 由已知点出发向所给直线作垂线,并确定垂足; 直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之

24、间的线段的长,得到线段的另一端点,即为对称点; 连接这些对称点,就得到原图形的轴对称图形四、本大题共3小题,每小题10 分,共 30 分.20 (2012?乐山)在读书月活动中,学校准备购买一批课外读物为使课外读物满足同学们的需求,学校就 “ 我最喜爱的课外读物” 从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类) ,如图是根据调查结果绘制的两幅不完整的统计图请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了200名同学;(2)条形统计图中,m=40,n=60;(3)扇形统计图中,艺术类读物所在扇形的圆心角是72度;(4)学校计划购买课外读物6000 册,请根

25、据样本数据,估计学校购买其他类读物多少册比较合理?考点 :条形统计图;用样本估计总体;扇形统计图。分析: (1)结合两个统计图,根据条形图得出文学类人数为:70,利用扇形图得出文学类精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 22 页所占百分比为:35%,即可得出总人数;(2)利用科普类所占百分比为:30%,则科普类人数为:n=200 30%=60 人,即可得出 m 的值;(3)根据艺术类读物所在扇形的圆心角是: 360 =72 ;(3)根据喜欢其他类读物人数所占的百分比,即可估计6000 册中其他读物的数量;解答: 解: (1)

26、根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,故本次调查中,一共调查了:70 35%=200 人,故答案为: 200;(2)根据科普类所占百分比为:30%,则科普类人数为:n=200 30%=60 人,m=2007030 60=40 人,故 m=40,n=60;故答案为: 40, 60;(3)艺术类读物所在扇形的圆心角是: 360 =72 ,故答案为: 72;(4)由题意,得(册)答:学校购买其他类读物900 册比较合理点评: 此题主要考查了条形图表和扇形统计图综合应用,将条形图与扇形图结合得出正确信息求出调查的总人数是解题关键21 (2012?乐山) 菜农李伟种

27、植的某蔬菜计划以每千克5 元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2 元的单价对外批发销售(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5 吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200 元试问小华选择哪种方案更优惠,请说明理由考点 :一元二次方程的应用。专题 :增长率问题。分析: (1)设出平均每次下调的百分率,根据从5 元下调到3.2 列出一元二次方程求解即可;(2)根据优惠方案分别求得两种方案的费用后比较即可得到结果解答: 解(1)

28、设平均每次下调的百分率为x精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 12 页,共 22 页由题意,得5(1x)2=3.2解这个方程,得x1=0.2,x2=1.8因为降价的百分率不可能大于1,所以 x2=1.8 不符合题意,符合题目要求的是x1=0.2=20% 答:平均每次下调的百分率是20%(2)小华选择方案一购买更优惠理由:方案一所需费用为:3.2 0.9 5000=14400(元) ,方案二所需费用为:3.2 5000200 5=15000(元) 1440015000,小华选择方案一购买更优惠点评: 本题考查了一元二次方程的应用,在解决有

29、关增长率的问题时,注意其固定的等量关系22 (2012?乐山)如图,在东西方向的海岸线l 上有一长为1 千米的码头MN ,在码头西端M 的正西方向30 千米处有一观察站O某时刻测得一艘匀速直线航行的轮船位于O 的北偏西 30 方向,且与O 相距千米的 A 处;经过40 分钟,又测得该轮船位于O 的正北方向,且与O 相距 20 千米的 B 处(1)求该轮船航行的速度;(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN 靠岸?请说明理由 (参考数据:,)考点 :解直角三角形的应用-方向角问题。分析: (1) )过点 A 作 AC OB 于点 C可知 ABC 为直角三角形根据勾股定理解

30、答(2)延长 AB 交 l 于 D,比较 OD 与 AM 、AN 的大小即可得出结论解答: 解(1)过点 A 作 ACOB 于点 C由题意,得OA=千米, OB=20 千米, AOC=30 (千米) ( 1分)在 RtAOC 中, OC=OA ?cosAOC=30(千米)BC=OC OB=3020=10(千米) (3 分)在 RtABC 中,=20(千米) (5 分)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 13 页,共 22 页轮船航行的速度为:(千米 /时) (6 分)(2)如果该轮船不改变航向继续航行,不能行至码头MN 靠岸 ( 7分)

31、理由:延长AB 交 l 于点 DAB=OB=20 (千米), AOC=30 OAB= AOC=30 , OBD= OAB+ AOC=60 在 RtBOD 中, OD=OB ?tanOBD=20 tan60 =(千米) (9 分)30+1,该轮船不改变航向继续航行,不能行至码头MN 靠岸 (10 分)点评: 本题考查了解直角三角形的应用,此题结合方向角,考查了阅读理解能力、解直角三角形的能力计算出相关特殊角和作出辅助线构造相似三角形是解题的关键五、本大题共2小题,每小题10 分,共 20 分23 (2012?乐山)已知关于x 的一元二次方程(xm)2+6x=4m 3 有实数根(1)求 m 的取值

32、范围;(2)设方程的两实根分别为x1与 x2,求代数式x1?x2x12x22的最大值考点 :根的判别式;根与系数的关系;二次函数的最值。专题 :计算题。分析: (1)将原方程转化为关于x 的一元二次方程,由于方程有实数根,故根的判别式大于 0,据此列不等式解答即可;(2)将 x1?x2x12x22化为两根之积与两根之和的形式,将含 m 的代数式代入求值即可解答: 解: (1)由( xm)2+6x=4m3,得 x2+( 62m)x+m24m+3=0 (1 分) =b24ac=(62m)24 1 (m24m+3)= 8m+24 (3 分)方程有实数根, 8m+24 0解得m 3m 的取值范围是m

33、3 (4 分)(2)方程的两实根分别为x1与 x2,由根与系数的关系,得x1+x2=2m6, (5 分)=3(m24m+3)( 2m6)2=m2+12m 27 =( m 6)2+9 (7 分)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 14 页,共 22 页m 3,且当 m 6时,( m6)2+9 的值随 m 的增大而增大,当 m=3 时,的值最大,最大值为(36)2+9=0的最大值是0 ( 10 分)点评: 本题考查了根的判别式、根与系数的关系、二次函数求最值,综合性较强,考查了学生的综合应用能力及推理能力24 (2012?乐山)如图,直线y

34、=2x+2 与 y 轴交于 A 点,与反比例函数(x0)的图象交于点 M,过 M 作 MH x 轴于点 H,且 tanAHO=2 (1)求 k 的值;(2)点 N( a,1)是反比例函数(x0)图象上的点,在x 轴上是否存在点P,使得PM+PN 最小?若存在,求出点P 的坐标;若不存在,请说明理由考点 :反比例函数综合题。分析: (1)根据直线解析式求A 点坐标,得OA 的长度;根据三角函数定义可求OH 的长度,得点 M 的横坐标;根据点M 在直线上可求点M 的坐标从而可求K 的值;(2) 根据反比例函数解析式可求N 点坐标;作点 N 关于 x 轴的对称点N1, 连接 MN1与 x 轴的交点就

35、是满足条件的P 点位置解答: 解:(1)由 y=2x+2 可知 A(0,2) ,即 OA=2 (1 分)tanAHO=2 , OH=1 (2 分)MH x 轴,点 M 的横坐标为1点 M 在直线 y=2x+2 上,精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 15 页,共 22 页点 M 的纵坐标为4即 M(1,4) (3 分)点 M 在 y=上,k=1 4=4 (4 分)(2)存在点 N(a,1)在反比例函数(x 0)上,a=4即点 N 的坐标为( 4,1) (5 分)过点 N 作 N 关于 x 轴的对称点N1,连接 MN1,交 x 轴于 P(

36、如图所示)此时 PM+PN 最小 ( 6 分)N 与 N1关于 x 轴的对称, N 点坐标为( 4, 1) ,N1的坐标为( 4, 1) (7 分)设直线 MN1的解析式为y=kx+b 由解得 k=, b= (9 分)直线 MN1的解析式为令 y=0,得 x=P 点坐标为(,0) (10 分)点评: 此题考查一次函数的综合应用,涉及线路最短问题,难度中等六、本大题共3小题,第25 题 12 分,第 26 题 13 分,共 25 分.25 (2012?乐山)如图1,ABC 是等腰直角三角形,四边形ADEF 是正方形, D、F 分别在 AB、AC 边上,此时BD=CF ,BD CF 成立(1)当正

37、方形ADEF 绕点 A 逆时针旋转 (0 90 )时,如图2,BD=CF 成立吗?若成立,请证明;若不成立,请说明理由(2)当正方形ADEF 绕点 A 逆时针旋转45 时,如图 3,延长 BD 交 CF 于点 G 求证: BD CF; 当 AB=4 ,AD=时,求线段BG 的长考点 :相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;等腰直角三角形;正方形的性质;旋转的性质。专题 :几何综合题。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 16 页,共 22 页分析: (1) ABC 是等腰直角三角形,四边形ADEF 是正方形,易证得BA

38、D CAF,根据全等三角形的对应边相等,即可证得BD=CF ;(2) 由BAD CAF,可得 ABM= GCM ,又由对顶角相等,易证得BMA CMG ,根据相似三角形的对应角相等,可得BGC= BAC=90 ,即可证得 BD CF; 首先过点 F 作 FNAC 于点 N,利用勾股定理即可求得AE,BC 的长,继而求得AN,CN 的长,又由等角的三角函数值相等,可求得AM=AB=,然后利用BMA CMG ,求得 CG 的长,再由勾股定理即可求得线段BG 的长解答: 解(1) BD=CF 成立理由: ABC 是等腰直角三角形,四边形ADEF 是正方形,AB=AC ,AD=AF , BAC= DA

39、F=90 , BAD= BAC DAC , CAF= DAF DAC , BAD= CAF,在BAD 和CAF 中, BAD CAF(SAS) BD=CF (3 分)(2) 证明:设BG 交 AC 于点 M BAD CAF(已证), ABM= GCM BMA= CMG , BMA CMG BGC=BAC=90 BDCF (6 分) 过点 F 作 FN AC 于点 N在正方形ADEF 中, AD=DE=,AE=2,AN=FN=AE=1 在等腰直角 ABC 中, AB=4 ,CN=AC AN=3 ,BC=4在 RtFCN 中, tanFCN=在 RtABM 中, tanABM=tanFCN=AM=

40、AB=精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 17 页,共 22 页CM=AC AM=4 =, BM= (9 分) BMA CMG,CG= (11 分)在 RtBGC 中, BG= (12 分)点评: 此题考查了相似三角形的判定与性质、全等三角形的判定与性质、等腰直角三角形的性质、矩形的性质、勾股定理以及三角函数等知识此题综合性很强,难度较大,注意数形结合思想的应用,注意辅助线的作法26 (2012?乐山)如图,在平面直角坐标系中,点 A 的坐标为( m,m) ,点 B 的坐标为( n,n) ,抛物线经过A、O、B 三点,连接OA、OB、A

41、B ,线段 AB 交 y 轴于点 C已知实数m、n(mn)分别是方程x22x3=0 的两根(1)求抛物线的解析式;(2)若点 P 为线段 OB 上的一个动点(不与点O、B 重合),直线 PC 与抛物线交于D、 E两点(点 D 在 y 轴右侧),连接 OD、BD 当OPC 为等腰三角形时,求点P 的坐标; 求BOD 面积的最大值,并写出此时点D 的坐标精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 18 页,共 22 页考点 :二次函数综合题。分析: (1)首先解方程得出A,B 两点的坐标,进而利用待定系数法求出二次函数解析式即可;(2) 首先求出A

42、B 的直线解析式,以及BO 解析式,再利用等腰三角形的性质得出当 OC=OP 时,当 OP=PC 时,点 P 在线段 OC 的中垂线上,当OC=PC 时分别求出x 的值即可; 利用 SBOD=SODQ+SBDQ得出关于x 的二次函数,进而得出最值即可解答: 解(1)解方程x2 2x3=0,得 x1=3,x2=1mn,m=1,n=3 (1 分)A( 1, 1) ,B(3, 3) 抛物线过原点,设抛物线的解析式为y=ax2+bx解得:,抛物线的解析式为 (4 分)(2) 设直线 AB 的解析式为y=kx+b 解得:,直线 AB 的解析式为C 点坐标为( 0,) (6 分)直线 OB 过点 O(0,

43、0) ,B(3, 3) ,直线 OB 的解析式为y= x OPC 为等腰三角形,OC=OP 或 OP=PC 或 OC=PC设 P(x, x) ,(i)当 OC=OP 时,解得,(舍去)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 19 页,共 22 页P1(,) (ii)当 OP=PC 时,点 P 在线段 OC 的中垂线上,P2(,) (iii )当 OC=PC 时,由,解得,x2=0(舍去)P3(,) P 点坐标为P1(,)或 P2(,)或 P3(,) (9 分) 过点 D 作 DGx 轴,垂足为G,交 OB 于 Q,过 B 作 BHx 轴,垂

44、足为H设 Q(x, x) ,D(x,) SBOD=SODQ+SBDQ=DQ?OG+DQ?GH,=DQ(OG+GH ) ,=,=,0 x3,当时,S 取得最大值为,此时 D(,) (13 分)点评: 此题主要考查了二次函数的综合应用以及等腰三角形的性质和三角形面积求法等知识,求面积最值经常利用二次函数的最值求法得出27 (2012?乐山)如图,ABC 内接于 O,直径 BD 交 AC 于 E,过 O 作 FGAB,交AC 于 F,交 AB 于 H,交 O 于 G精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 20 页,共 22 页(1)求证: OF?

45、DE=OE?2OH;(2)若 O 的半径为 12,且 OE:OF:OD=2 :3:6,求阴影部分的面积 (结果保留根号)考点 :相似三角形的判定与性质;含30 度角的直角三角形;三角形中位线定理;垂径定理;圆周角定理;扇形面积的计算。专题 :几何综合题。分析: (1) 由 BD 是直径,根据圆周角定理, 可得 DAB=90 , 又由 FGAB , 可得 FGAD ,即可判定 FOE ADE ,根据相似三角形的对应边成比例,即可得,然后由 O 是 BD 的中点, DA OH,可得 AD=2OH ,则可证得OF?DE=OE?2OH;(2)由 O 的半径为12,且 OE:OF:OD=2:3:6,即可

46、求得OE,DE,OF 的长,由,求得 AD 的长,又由在RtABC 中, OB=2OH ,可求得 BOH=60 ,继而可求得 BH 的长,又由S阴影=S扇形GOB SOHB,即可求得答案解答: (1)证明: BD 是直径, DAB=90 ( 1 分)FGAB ,DA FO FOE ADE 即 OF?DE=OE ?AD (3 分)O 是 BD 的中点, DA OH,AD=2OH (4 分)OF?DE=OE?2OH (5 分)(2)解: O 的半径为12,且 OE:OF:OD=2 :3:6,OE=4, ED=8,OF=6 (6 分)代入( 1)中 OF?DE=OE ?AD ,得 AD=12 OH=

47、AD=6 在 RtABC 中, OB=2OH , OBH=30 , BOH=60 BH=BO ?sin60 =12=6 (8 分)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 21 页,共 22 页S阴影=S扇形GOBSOHB= 6 6=24 18 (10 分)点评: 此题考查了相似三角形的判定与性质、圆周角定理、 平行线等分线段定理以及三角函数等知识此题综合性较强,难度适中,注意数形结合思想的应用,注意证得FOE ADE 是解此题的关键精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 22 页,共 22 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁