《2022年高二数学重点知识点梳理.docx》由会员分享,可在线阅读,更多相关《2022年高二数学重点知识点梳理.docx(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022年高二数学重点知识点梳理 因为高二起先努力,所以前面的学问确定有肯定的欠缺,这就要求自己要制定肯定的安排,更要比别人付出更多的努力,信任付出的汗水不会白白流淌的,收获总是自己的。我高二频道为你整理了高二数学重点学问点梳理,助你金榜题名! 高二数学重点学问点梳理 简洁随机抽样的定义: 一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(nN),假如每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简洁随机抽样。 简洁随机抽样的特点: (1)用简洁随机抽样从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时任一个体被抽到的概率为 ;在整个抽样
2、过程中各个个体被抽到的概率为 (2)简洁随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等; (3)简洁随机抽样方法,体现了抽样的客观性与公允性,是其他更困难抽样方法的基础. (4)简洁随机抽样是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样 简洁抽样常用方法: (1)抽签法:先将总体中的全部个体(共有N个)编号(号码可从1到N),并把号码写在形态、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行匀称搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本适用范围:总体的个体数不多时优点:抽签法简便易行,当总体的个体数不太多时相宜采
3、纳抽签法. (2)随机数表法:随机数表抽样“三步曲”:第一步,将总体中的个体编号;其次步,选定起先的数字;第三步,获得样本号码概率. 高二数学重点学问点梳理 集合的分类: (1)按元素属性分类,如点集,数集。 (2)按元素的个数多少,分为有/无限集 关于集合的概念: (1)确定性:作为一个集合的元素,必需是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。 (2)互异性:对于一个给定的集合,集合中的元素肯定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。
4、(3)无序性:推断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。 集合可以依据它含有的元素的个数分为两类: 含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。 非负整数全体构成的集合,叫做自然数集,记作N; 在自然数集内解除0的集合叫做正整数集,记作N+或N; 整数全体构成的集合,叫做整数集,记作Z; 有理数全体构成的集合,叫做有理数集,记作Q;(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。) 实数全体构成的集合,叫做实数集,记作R。(包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的'点
5、一一对应的数。) 1.列举法:假如一个集合是有限集,元素又不太多,经常把集合的全部元素都列举出来,写在花括号“”内表示这个集合,例如,由两个元素0,1构成的集合可表示为0,1. 有些集合的元素较多,元素的排列又呈现肯定的规律,在不致于发生误会的状况下,也可以列出几个元素作为代表,其他元素用省略号表示。 例如:不大于100的自然数的全体构成的集合,可表示为0,1,2,3,100. 无限集有时也用上述的列举法表示,例如,自然数集N可表示为1,2,3,n,. 2.描述法:一种更有效地描述集合的方法,是用集合中元素的特征性质来描述。 例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大
6、于0” 而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为 xRx能被2整除,且大于0或xRx=2n,nN+, 大括号内竖线左边的X表示这个集合的随意一个元素,元素X从实数集合中取值,在竖线右边写出只有集合内的元素x才具有的性质。 一般地,假如在集合I中,属于集合A的随意一个元素x都具有性质p(x),而不属于集合A的元素都不具有的性质p(x),则性质p(x)叫做集合A的一个特征性质。于是,集合A可以用它的性质p(x)描述为xIp(x) 它表示集合A是由集合I中具有性质p(x)的全部元素构成的,这种表示集合的方法,叫做特征性质描述法,简称描述法。 例如:集合A=x
7、Rx2-1=0的特征是X2-1=0 高二数学重点学问点梳理 函数的性质: 函数的单调性、奇偶性、周期性 单调性:定义:留意定义是相对与某个详细的区间而言。 判定方法有:定义法(作差比较和作商比较) 导数法(适用于多项式函数) 复合函数法和图像法。 应用:比较大小,证明不等式,解不等式。 奇偶性:定义:留意区间是否关于原点对称,比较f(x)与f(-x)的关系。f(x)-f(-x)=0f(x)=f(-x)f(x)为偶函数; f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数。 判别方法:定义法,图像法,复合函数法 应用:把函数值进行转化求解。 周期性:定义:若函数f(x)对定义域内的随意x满意:f(x+T)=f(x),则T为函数f(x)的周期。 其他:若函数f(x)对定义域内的随意x满意:f(x+a)=f(x-a),则2a为函数f(x)的周期. 应用:求函数值和某个区间上的函数解析式。 高二数学重点学问点梳理第5页 共5页第 5 页 共 5 页第 5 页 共 5 页第 5 页 共 5 页第 5 页 共 5 页第 5 页 共 5 页第 5 页 共 5 页第 5 页 共 5 页第 5 页 共 5 页第 5 页 共 5 页第 5 页 共 5 页