《椭圆的几何性质》课件.ppt

上传人:仙*** 文档编号:25342714 上传时间:2022-07-11 格式:PPT 页数:19 大小:445.01KB
返回 下载 相关 举报
《椭圆的几何性质》课件.ppt_第1页
第1页 / 共19页
《椭圆的几何性质》课件.ppt_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《《椭圆的几何性质》课件.ppt》由会员分享,可在线阅读,更多相关《《椭圆的几何性质》课件.ppt(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、椭圆的几何性质1 .1 .椭圆定义:椭圆定义:平面内平面内与两个与两个定点定点F F1 1F F2 2的距离的距离和和等于等于常数常数(大于大于F F1 1F F2 2)的点的轨迹叫作椭圆,这两个)的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距做椭圆的焦距 aPFPF221 注:注:若若P是椭圆上的点,则是椭圆上的点,则一一.知识回顾知识回顾0 12222babyax 0 12222babxay图图 形形方方 程程焦焦 点点a,b,c之间的关系之间的关系|MF1|+|MF2|=2a (2a2c0)定定 义义12yoFFMx1oFy

2、x2FM2.2.椭圆的标准方程椭圆的标准方程22200(,)acb acab注:注:焦点位置的判断焦点位置的判断二二.知识建构知识建构1 1、椭圆的范围、椭圆的范围 oxy由由12222byax即即byax 和说明:椭圆位于直线说明:椭圆位于直线X=X=a a和和y=y=b b所围成的矩形之中所围成的矩形之中. .112222byax和2 2、椭圆的顶点、椭圆的顶点22221(0),xyabab在中令令 x=0 x=0,得,得 y=y=?,说明椭圆与?,说明椭圆与 y y轴的交点(轴的交点( ),), 令令 y=0y=0,得,得 x=x=?, , 说明椭圆与说明椭圆与 x x轴的交点(轴的交点

3、( ). .* *顶点顶点:椭圆与坐标轴的椭圆与坐标轴的四个交点,叫做椭圆的顶四个交点,叫做椭圆的顶点。点。 oxyB1(0,b)B2(0,-b)A1A2(a,0)0, ba, 0* *长轴长轴、短轴短轴: 线段线段A A1 1A A2 2、B B1 1B B2 2分别叫做椭圆的长轴分别叫做椭圆的长轴和短轴。和短轴。a a、b b分别叫做椭圆的分别叫做椭圆的长长半轴长半轴长和和短半轴长短半轴长。 oxyyxOP(x,y)P1(x,y)P2(x,y)从图形上看,从图形上看,椭圆关于椭圆关于x轴、轴、y轴、原点对称轴、原点对称3 3、椭圆的对称性、椭圆的对称性22221(0),xyabab在之中

4、把把(X)换成换成(-X),方程不变方程不变,说明椭圆关于说明椭圆关于( )轴对称;轴对称; 把把(Y)换成换成(-Y),方程不变方程不变,说明椭圆关于说明椭圆关于( )轴对称;轴对称; 把把(X)换成换成(-X), (Y)换成换成(-Y),方程还是不变方程还是不变,说明椭圆关说明椭圆关于于( )对称;对称;中心:椭圆的对称中心叫做椭圆的中心中心:椭圆的对称中心叫做椭圆的中心.oxy 所以,坐标轴是椭圆所以,坐标轴是椭圆的对称轴,原点是椭圆的对称轴,原点是椭圆的对称中心的对称中心. .Y X 原点原点 说出下列曲线的对称性说出下列曲线的对称性: :22(1)314yx 2(2)4xy2(3)2

5、5xxyy22(4)35xyxy问题 oxy4 4、椭圆的离心率、椭圆的离心率o ox xy yace 离心率:椭圆的焦距与长轴长的比:离心率:椭圆的焦距与长轴长的比:叫做椭圆的离心率。叫做椭圆的离心率。1 1 离心率的取值范围:离心率的取值范围:2 2 离心率对椭圆形状的影响:离心率对椭圆形状的影响:因为因为 a c 0a c 0,所以,所以0e 10e 11)e 越接近越接近 1,c 就越接近就越接近 a,从而,从而 b就越小,就越小,椭椭圆就越扁圆就越扁2)e 越接近越接近 0,c 就越接近就越接近 0,从而,从而 b就越大,就越大,椭椭圆就越圆圆就越圆A1A2B2B1F2F1OxyB2

6、F2 =aOF2 =cOB2 =b 直角三角形直角三角形OB2F2,它反应了它反应了椭圆三个基本量之间的关系椭圆三个基本量之间的关系,所以所以叫做椭圆的叫做椭圆的特征三角形特征三角形.5 5、特征三角形、特征三角形小结一:基本元素小结一:基本元素 o ox xy yB B1 1(0,b)(0,b)B B2 2(0,(0,- -b)b)A A1 1A A2 211基本量:基本量:a a、b b、c c、e e、(共四个量)、(共四个量)22基本点:顶点、焦点、中心(共七个点)基本点:顶点、焦点、中心(共七个点)33基本线:对称轴(共两条线)基本线:对称轴(共两条线)请考虑:基本量之间、基本请考虑

7、:基本量之间、基本点之间、基本线之间以及它点之间、基本线之间以及它们相互之间的关系(位置、们相互之间的关系(位置、数量之间的关系)数量之间的关系)图 形方 程范 围对称性焦 点顶 点离心率 0 12222 babyax 0 12222 baaybxF1F2MyxOyxOMF1F2(c,0)、( c,0)(0,c)、(0, c)( a,0)、(0, b)|x| a |y| b|x| b |y| a关于关于x轴、轴、y轴、原点对称轴、原点对称( b,0)、(0, a)ace 例例1 1已知椭圆方程为已知椭圆方程为16x16x2 2+25y+25y2 2=400,=400,并用并用描点法画出它的图形

8、描点法画出它的图形 它的长轴长是:它的长轴长是: 。短轴长是:。短轴长是: 。焦距是:焦距是: 。 离心率等于:离心率等于: 。焦点坐标是:焦点坐标是: 。顶点坐标是:。顶点坐标是: _。 外切矩形的面积等于:外切矩形的面积等于: 。 108635( 3,0)( 5,0)(0, 4)80解题关键是什么解题关键是什么?四四.例题讲解例题讲解例例1 1已知椭圆方程为已知椭圆方程为16x16x2 2+25y+25y2 2=400,=400,并用并用描点法画出它的图形描点法画出它的图形四四.例题讲解例题讲解XYO例例2 2过适合下列条件的椭圆的标准方程:过适合下列条件的椭圆的标准方程:(1 1)经过点

9、)经过点 、 ;(2 2)长轴长等于)长轴长等于 , ,离心率等于离心率等于 (3 3)( 3,0)P (0, 2)Q2035四四.例题讲解例题讲解长轴是短轴的三倍,且椭圆经过点长轴是短轴的三倍,且椭圆经过点P P(3 3,0 0),求椭圆的方程。),求椭圆的方程。2. 已知椭圆已知椭圆 的离心率的离心率 求求m的值及椭圆的长轴和短轴的长、焦点坐的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标。标、顶点坐标。22(3)(0)xmym m3,2e 练习练习1.1.求下列椭圆的长轴长、短轴长、焦点坐标、顶点坐标和求下列椭圆的长轴长、短轴长、焦点坐标、顶点坐标和离心率。离心率。(1 1)x x2 2+

10、9y+9y2 2=81 (2) 25x=81 (2) 25x2 2+9y+9y2 2=225=225(3 3)16x16x2 2+y+y2 2=25 (4) 4x=25 (4) 4x2 2+5y+5y2 2=1=1例例3 3 如图如图, ,我国发射的第一颗人造卫星的轨道我国发射的第一颗人造卫星的轨道, ,是是以地心以地心F F2 2为一个焦点的椭圆为一个焦点的椭圆. .已知它的近地点已知它的近地点A A距地距地面面439km,439km,远地点远地点B B距地面距地面2384km,2384km,并且并且F F2 2,A,B,A,B在同一在同一条直线上条直线上, ,地球半径为地球半径为6371km,6371km,求人造卫星运行的轨求人造卫星运行的轨道方程道方程( (精确到精确到1km).1km). F F1 1A AB B.F F2 2地球

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁