2015年高考理科数学试卷全国卷1含规范标准答案).doc

上传人:小** 文档编号:2533644 上传时间:2020-04-18 格式:DOC 页数:19 大小:876.08KB
返回 下载 相关 举报
2015年高考理科数学试卷全国卷1含规范标准答案).doc_第1页
第1页 / 共19页
2015年高考理科数学试卷全国卷1含规范标准答案).doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《2015年高考理科数学试卷全国卷1含规范标准答案).doc》由会员分享,可在线阅读,更多相关《2015年高考理科数学试卷全国卷1含规范标准答案).doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、*-2015年高考理科数学试卷全国卷11设复数z满足=,则|z|=( )(A)1 (B) (C) (D)22 =( )(A) (B) (C) (D)3设命题:,则为( )(A) (B)(C) (D)4投篮测试中,每人投3次,至少投中2次才能通过测试。已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )(A)0.648 (B)0.432 (C)0.36 (D)0.3125已知M()是双曲线C:上的一点,是C上的两个焦点,若,则的取值范围是( )(A)(-,) (B)(-,)(C)(,) (D)(,)6九章算术是我国古代内容极为丰富的数学名著,书中有如下

2、问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有( )(A)14斛 (B)22斛 (C)36斛 (D)66斛7设为所在平面内一点,则( )(A) (B) (C) (D) 8函数=的部分图像如图所示,则的单调递减区间为( )(A) (B)(C) (D) 9执行右面的程序框图,如果输入的t=0.01,则输出的n=( )(A)5 (B)6 (C)7 (

3、D)810的展开式中,的系数为( )(A)10 (B)20 (C)30 (D)6011圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20,则r=( )(A)1 (B)2 (C)4 (D)812设函数=,其中a1,若存在唯一的整数,使得0,则的取值范围是( )(A)-,1) (B)-,) (C),) (D),1)13若函数f(x)=为偶函数,则a= 14一个圆经过椭圆的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为 .15若满足约束条件,则的最大值为 .16在平面四边形ABCD中,A=B=C=75,BC=

4、2,则AB的取值范围是 .17(本小题满分12分)为数列的前项和.已知0,=.()求的通项公式;()设 ,求数列的前项和.18如图,四边形ABCD为菱形,ABC=120,E,F是平面ABCD同一侧的两点,BE平面ABCD,DF平面ABCD,BE=2DF,AEEC.()证明:平面AEC平面AFC;()求直线AE与直线CF所成角的余弦值.19某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费和年销售量(=1,2,8)数据作了初步处理,得到下面的散点图及一些统计量的值.46.656.36.8289.81.

5、61469108.8表中 , =()根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)()根据()的判断结果及表中数据,建立y关于x的回归方程;()已知这种产品的年利率z与x、y的关系为z=0.2y-x.根据()的结果回答下列问题:()年宣传费x=49时,年销售量及年利润的预报值是多少?()年宣传费x为何值时,年利率的预报值最大?附:对于一组数据,,,其回归线的斜率和截距的最小二乘估计分别为:20(本小题满分12分)在直角坐标系中,曲线C:y=与直线(0)交与M,N两点,()当k=0时,分别求C在点M和N处的切线方程;(

6、)y轴上是否存在点P,使得当k变动时,总有OPM=OPN?说明理由.21(本小题满分12分)已知函数f(x)=.()当a为何值时,x轴为曲线 的切线;()用 表示m,n中的最小值,设函数 ,讨论h(x)零点的个数.22(本题满分10分)选修4-1:几何证明选讲如图,AB是的直径,AC是的切线,BC交于E. ()若D为AC的中点,证明:DE是的切线;()若,求ACB的大小. 23(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系中,直线:=2,圆:,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系.()求,的极坐标方程;()若直线的极坐标方程为,设与的交点为, ,求的面积. 24(本小

7、题满分10分)选修45:不等式选讲 已知函数=|x+1|-2|x-a|,a0.()当a=1时,求不等式f(x)1的解集;()若f(x)的图像与x轴围成的三角形面积大于6,求a的取值范围.【答案解析】1.【答案】A【解析】由得,=,故|z|=1,故选A.考点:本题主要考查复数的运算和复数的模等.2.【答案】D【解析】原式= =,故选D.考点:本题主要考查诱导公式与两角和与差的正余弦公式.3.【答案】C【解析】:,故选C.考点:本题主要考查特称命题的否定4.【答案】A【解析】根据独立重复试验公式得,该同学通过测试的概率为=0.648,故选A.考点:本题主要考查独立重复试验的概率公式与互斥事件和概率

8、公式5.【答案】A【解析】由题知,所以= =,解得,故选A.考点:双曲线的标准方程;向量数量积坐标表示;一元二次不等式解法.6.【答案】B【解析】设圆锥底面半径为r,则=,所以米堆的体积为=,故堆放的米约为1.6222,故选B.考点:圆锥的性质与圆锥的体积公式7.【答案】A【解析】由题知=,故选A.考点:平面向量的线性运算8.【答案】D【解析】由五点作图知,解得,所以,令,解得,故单调减区间为(,),故选D.考点:三角函数图像与性质9.【答案】C【解析】执行第1次,t=0.01,S=1,n=0,m=0.5,S=S-m=0.5,=0.25,n=1,S=0.5t=0.01,是,循环,执行第2次,S

9、=S-m=0.25,=0.125,n=2,S=0.25t=0.01,是,循环,执行第3次,S=S-m=0.125,=0.0625,n=3,S=0.125t=0.01,是,循环,执行第4次,S=S-m=0.0625,=0.03125,n=4,S=0.0625t=0.01,是,循环,执行第5次,S=S-m=0.03125,=0.015625,n=5,S=0.03125t=0.01,是,循环,执行第6次,S=S-m=0.015625,=0.0078125,n=6,S=0.015625t=0.01,是,循环,执行第7次,S=S-m=0.0078125,=0.00390625,n=7,S=0.00781

10、25t=0.01,否,输出n=7,故选C.考点:本题注意考查程序框图10.【答案】C【解析】在的5个因式中,2个取因式中剩余的3个因式中1个取,其余因式取y,故的系数为=30,故选 C.考点:本题主要考查利用排列组合知识计算二项式展开式某一项的系数.【名师点睛】本题利用排列组合求多项展开式式某一项的系数,试题形式新颖,是中档题,求多项展开式式某一项的系数问题,先分析该项的构成,结合所给多项式,分析如何得到该项,再利用排列组知识求解.11.【答案】B【解析】由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r,圆柱的高为2r,其表面积为=16 + 20,解得r=2,故

11、选B.考点:简单几何体的三视图;球的表面积公式、圆柱的测面积公式12.【答案】D【解析】设=,由题知存在唯一的整数,使得在直线的下方.因为,所以当时,0,当时,0,所以当时,=,当时,=-1,直线恒过(1,0)斜率且,故,且,解得1,故选D.考点:本题主要通过利用导数研究函数的图像与性质解决不等式成立问题13.【答案】1【解析】由题知是奇函数,所以 =,解得=1.考点:函数的奇偶性14.【答案】【解析】设圆心为(,0),则半径为,则,解得,故圆的方程为.考点:椭圆的几何性质;圆的标准方程15.【答案】3【解析】作出可行域如图中阴影部分所示,由斜率的意义知,是可行域内一点与原点连线的斜率,由图可

12、知,点A(1,3)与原点连线的斜率最大,故的最大值为3.考点:线性规划解法16.【答案】(,)【解析】如图所示,延长BA,CD交于E,平移AD,当A与D重合与E点时,AB最长,在BCE中,B=C=75,E=30,BC=2,由正弦定理可得,即,解得=,平移AD ,当D与C重合时,AB最短,此时与AB交于F,在BCF中,B=BFC=75,FCB=30,由正弦定理知,即,解得BF=,所以AB的取值范围为(,).考点:正余弦定理;数形结合思想17.【答案】()()【解析】试题分析:()先用数列第项与前项和的关系求出数列的递推公式,可以判断数列是等差数列,利用等差数列的通项公式即可写出数列的通项公式;(

13、)根据()数列的通项公式,再用拆项消去法求其前项和.试题解析:()当时,因为,所以=3,当时,=,即,因为,所以=2,所以数列是首项为3,公差为2的等差数列,所以=;()由()知,=,所以数列前n项和为= =.考点:数列前n项和与第n项的关系;等差数列定义与通项公式;拆项消去法18.【答案】()见解析()【解析】试题分析:()连接BD,设BDAC=G,连接EG,FG,EF,在菱形ABCD中,不妨设GB=1易证EGAC,通过计算可证EGFG,根据线面垂直判定定理可知EG平面AFC,由面面垂直判定定理知平面AFC平面AEC;()以G为坐标原点,分别以的方向为轴,y轴正方向,为单位长度,建立空间直角

14、坐标系G-xyz,利用向量法可求出异面直线AE与CF所成角的余弦值.试题解析:()连接BD,设BDAC=G,连接EG,FG,EF,在菱形ABCD中,不妨设GB=1,由ABC=120,可得AG=GC=.由BE平面ABCD,AB=BC可知,AE=EC,又AEEC,EG=,EGAC,在RtEBG中,可得BE=,故DF=.在RtFDG中,可得FG=.在直角梯形BDFE中,由BD=2,BE=,DF=可得EF=,EGFG,ACFG=G,EG平面AFC,EG面AEC,平面AFC平面AEC. ()如图,以G为坐标原点,分别以的方向为轴,y轴正方向,为单位长度,建立空间直角坐标系G-xyz,由()可得A(0,0

15、),E(1,0, ),F(1,0,),C(0,0),=(1,),=(-1,-,).10分故.所以直线AE与CF所成的角的余弦值为. 考点:空间垂直判定与性质;异面直线所成角的计算;空间想象能力,推理论证能力19.【答案】()适合作为年销售关于年宣传费用的回归方程类型;()()46.24【解析】试题分析:()由散点图及所给函数图像即可选出适合作为拟合的函数;()令,先求出建立关于的线性回归方程,即可关于的回归方程;()()利用关于的回归方程先求出年销售量的预报值,再根据年利率z与x、y的关系为z=0.2y-x即可年利润z的预报值;()根据()的结果知,年利润z的预报值,列出关于的方程,利用二次函

16、数求最值的方法即可求出年利润取最大值时的年宣传费用.试题解析:()由散点图可以判断,适合作为年销售关于年宣传费用的回归方程类型.()令,先建立关于的线性回归方程,由于=,=563-686.8=100.6.关于的线性回归方程为,关于的回归方程为.()()由()知,当=49时,年销售量的预报值=576.6,. ()根据()的结果知,年利润z的预报值,当=,即时,取得最大值.故宣传费用为46.24千元时,年利润的预报值最大.12分考点:非线性拟合;线性回归方程求法;利用回归方程进行预报预测;应用意识20.【答案】()或()存在【解析】试题分析:()先求出M,N的坐标,再利用导数求出M,N.()先作出

17、判定,再利用设而不求思想即将代入曲线C的方程整理成关于的一元二次方程,设出M,N的坐标和P点坐标,利用设而不求思想,将直线PM,PN的斜率之和用表示出来,利用直线PM,PN的斜率为0,即可求出关系,从而找出适合条件的P点坐标.试题解析:()由题设可得,或,.,故在=处的到数值为,C在处的切线方程为,即.故在=-处的到数值为-,C在处的切线方程为,即.故所求切线方程为或.()存在符合题意的点,证明如下:设P(0,b)为复合题意得点,直线PM,PN的斜率分别为.将代入C得方程整理得.=.当时,有=0,则直线PM的倾斜角与直线PN的倾斜角互补,故OPM=OPN,所以符合题意. 考点:抛物线的切线;直

18、线与抛物线位置关系;探索新问题;运算求解能力21.【答案】();()当或时,由一个零点;当或时,有两个零点;当时,有三个零点.【解析】试题分析:()先利用导数的几何意义列出关于切点的方程组,解出切点坐标与对应的值;()根据对数函数的图像与性质将分为研究的零点个数,若零点不容易求解,则对再分类讨论.试题解析:()设曲线与轴相切于点,则,即,解得.因此,当时,轴是曲线的切线. ()当时,从而,在(1,+)无零点.当=1时,若,则,,故=1是的零点;若,则,,故=1不是的零点.当时,所以只需考虑在(0,1)的零点个数.()若或,则在(0,1)无零点,故在(0,1)单调,而,所以当时,在(0,1)有一

19、个零点;当0时,在(0,1)无零点.()若,则在(0,)单调递减,在(,1)单调递增,故当=时,取的最小值,最小值为=.若0,即0,在(0,1)无零点.若=0,即,则在(0,1)有唯一零点;若0,即,由于,所以当时,在(0,1)有两个零点;当时,在(0,1)有一个零点.10分综上,当或时,由一个零点;当或时,有两个零点;当时,有三个零点. 考点:利用导数研究曲线的切线;对新概念的理解;分段函数的零点;分类整合思想22.【答案】()见解析()60【解析】试题分析:()由圆的切线性质及圆周角定理知,AEBC,ACAB,由直角三角形中线性质知DE=DC,OE=OB,利用等量代换可证DEC+OEB=9

20、0,即OED=90,所以DE是圆O的切线;()设CE=1,由得,AB=,设AE=,由勾股定理得,由直角三角形射影定理可得,列出关于的方程,解出,即可求出ACB的大小.试题解析:()连结AE,由已知得,AEBC,ACAB,在RtAEC中,由已知得DE=DC,DEC=DCE,连结OE,OBE=OEB,ACB+ABC=90,DEC+OEB=90,OED=90,DE是圆O的切线.()设CE=1,AE=,由已知得AB=, 由射影定理可得,解得=,ACB=60. 考点:圆的切线判定与性质;圆周角定理;直角三角形射影定理23.【答案】(),()【解析】试题分析:()用直角坐标方程与极坐标互化公式即可求得,的

21、极坐标方程;()将将代入即可求出|MN|,利用三角形面积公式即可求出的面积.试题解析:()因为,的极坐标方程为,的极坐标方程为.5分 ()将代入,得,解得=,=,|MN|=,因为的半径为1,则的面积=.考点:直角坐标方程与极坐标互化;直线与圆的位置关系24.【答案】()()(2,+)【解析】试题分析:()利用零点分析法将不等式f(x)1化为一元一次不等式组来解;()将化为分段函数,求出与轴围成三角形的顶点坐标,即可求出三角形的面积,根据题意列出关于的不等式,即可解出的取值范围.试题解析:()当a=1时,不等式f(x)1化为|x+1|-2|x-1|1,等价于或或,解得,所以不等式f(x)1的解集为. ()由题设可得, 所以函数的图像与轴围成的三角形的三个顶点分别为,所以ABC的面积为.由题设得6,解得.所以的取值范围为(2,+). 考点:含绝对值不等式解法;分段函数;一元二次不等式解法

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁