《YC1090货车驱动桥的结构设计(有cad图).docx》由会员分享,可在线阅读,更多相关《YC1090货车驱动桥的结构设计(有cad图).docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、YC1090货车驱动桥的结构设计(有cad图).doc 目录 1 前言 (1) 2 总体方案论证 (2) 2.1 非断开式驱动桥 (2) 2.2 断开式驱动桥 (3) 2.3 多桥驱动的布置 (3) 3 主减速器设计 (5) 3.1 主减速器结构方案分析 (5) 3.2 主减速器主、从动锥齿轮的支承方案 (6) 3.3 主减速器锥齿轮设计 (7) 3.4 主减速器锥齿轮的材料 (10) 3.5 主减速器锥齿轮的强度计算 (10) 3.6 主减速器锥齿轮轴承的设计计算 (12) 4 差速器设计 (17) 4.1 差速器结构形式选择 (17) 4.2 普通锥齿轮式差速器齿轮设计 (17) 4.3
2、差速器齿轮的材料 (19) 4.4 普通锥齿轮式差速器齿轮强度计算 (19) 5 驱动车轮的传动装置设计 (21) 5.1 半轴的型式 (21) 5.2 半轴的设计与计算 (21) 5.3 半轴的结构设计及材料与热处理 (24) 6 驱动桥壳设计 (25) 6.1 桥壳的结构型式 (25) 6.2 桥壳的受力分析及强度计算 (25) 7 结论 (27) 参考文献 (28) 致谢 (29) 1前言 本课题是对 YC1090 货车驱动桥的结构设计。故本说明书将以“驱动桥设计” 内容对驱动桥及其主要零部件的结构型式与设计计算作一一介绍。 驱动桥的设计,由驱动桥的结构组成、功用、工作特点及设计要求讲起
3、,详细 地分析了驱动桥总成的结构型式及布置方法;全面介绍了驱动桥车轮的传动装置和 桥壳的各种结构型式与设计计算方法。 汽车驱动桥是汽车的重大总成,承载着汽车的满载簧荷重及地面经车轮、车架 及承载式车身经悬架给予的铅垂力、纵向力、横向力及其力矩,以及冲击载荷;驱 动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。汽车驱动桥结构型 式和设计参数除对汽车的可靠性与耐久性有重要影响外,也对汽车的行驶性能如动 力性、经济性、平顺性、通过性、机动性和操动稳定性等有直接影响。另外,汽车 驱动桥在汽车的各种总成中也是涵盖机械零件、部件、分总成等的品种最多的大总 成。例如,驱动桥包含主减速器、差速器、驱动
4、车轮的传动装置(半轴及轮边减速器)、桥壳和各种齿轮。由上述可见,汽车驱动桥设计涉及的机械零部件及元件的 品种极为广泛,对这些零部件、元件及总成的制造也几乎要设计到所有的现代机械 制造工艺。因此,通过对汽车驱动桥的学习和设计实践,可以更好的学习并掌握现 代汽车设计与机械设计的全面知识和技能。 课题所设计的货车最高车速 V 85km/h, 发动机标定功率( 3000r/min)99kW,最大扭矩( 12001400r/min)430 Nm。 他有以下两大难题,一是将发动机输出扭矩通过万向传动轴将动力传递到后轮 子上,达到更好的车轮牵引力与转向力的有效发挥,从而提高汽车的行驶能力。二 是差速器向两边
5、半轴传递动力的同时,允许两边半轴以不同的转速旋转,满足两边 车轮尽可能以纯滚动的形式作不等距行驶,减少轮胎与地面的摩擦。 本课题的设计思路可分为以下几点:首先选择初始方案, YC1090属于中型货车,采用后桥驱动,所以设计的驱动桥结构需要符合中型货车的结构要求;接着选择各部件的结构形式;最后选择各部件的具体参数,设计出各主要尺寸。 所设计的 YC1090货车驱动桥制造工艺性好、外形美观,工作更稳定、可靠。 该驱动桥设计大大降低了制造成本,同时驱动桥使用维护成本也降低了。驱动桥结构 符合 YC1090货车的整体结构要求。设计的产品达到了结构简单,修理、保养方便; 机件工艺性好,制造容易的要求。
6、目前我国正在大力发展汽车产业 , 采用后轮驱动汽车的平衡性和操作性都将会有 很大的提高。后轮驱动的汽车加速时,牵引力将不会由前轮发出,所以在加速转弯 时,司机就会感到有更大的横向握持力,操作性能变好。维修费用低也是后轮驱动的 一个优点,尽管由于构造和车型的不同,这种费用将会有很大的差别。如果你的变速 器出了故障,对于后轮驱动的汽车就不需要对差速器进行维修,但是对于前轮驱动的 汽车来说也许就有这个必要了,因为这两个部件是做在一起的。 所以后轮驱动必然会使得乘车更加安全、舒适,从而带来可观的经济效益。 1/34 YC1090 货车驱动桥的设计 2总体方案论证 驱动桥处于动力传动系的末端,其基本功能
7、是增大由传动轴或变速器传来的转矩, 并将动力合理地分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直力力和横向力。驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳 等组成。 驱动桥设计应当满足如下基本要求: a)所选择的主减速比应能保证汽车具有最佳的动力性和燃料经济性。 b)外形尺寸要小,保证有必要的离地间隙。 c)齿轮及其它传动件工作平稳,噪声小。 d)在各种转速和载荷下具有高的传动效率。 e)在保证足够的强度、刚度条件下,应力求质量小,尤其是簧下质量应尽量小,以改善汽车平顺性。 f)与悬架导向机构运动协调,对于转向驱动桥,还应与转向机构运动协调。 g)结构简单,加工工艺性好
8、,制造容易,拆装,调整方便。 驱动桥的结构型式按工作特性分,可以归并为两大类,即非断开式驱动桥和断开式驱动桥。当驱动车轮采用非独立悬架时,应该选用非断开式驱动桥;当驱动车 轮采用独立悬架时,则应该选用断开式驱动桥。因此,前者又称为非独立悬架驱动桥;后者称为独立悬架驱动桥。独立悬架驱动桥结构叫复杂,但可以大大提高汽车 在不平路面上的行驶平顺性。 2.1非断开式驱动桥 普通非断开式驱动桥,由于结构简单、造价低廉、工作可靠,广泛用在各种载货汽车、客车和公共汽车上,在多数的越野汽车和部分轿车上也采用这种结构。他们的具体结构、特别是桥壳结构虽然各不相同,但是有一个共同特点,即桥壳是一根支承在左右驱动车轮
9、上的刚性空心梁,齿轮及半轴等传动部件安装在其中。这时整个驱动桥、驱动车轮及部分传动轴均属于簧下质量,汽车簧下质量较大,这是它的一个缺点。 驱动桥的轮廓尺寸主要取决于主减速器的型式。在汽车轮胎尺寸和驱动桥下的最小离地间隙已经确定的情况下,也就限定了主减速器从动齿轮直径的尺寸。在给定速比的条件下,如果单级主减速器不能满足离地间隙要求,可该用双级结构。在双级主减速器中,通常把两级减速器齿轮放在一个主减速器壳体内,也可以将第二级减速齿轮作为轮边减速器。对于轮边减速器:越野汽车为了提高离地间隙,可以将一对圆柱齿轮构成的轮边减速器的主动齿轮置于其从动齿轮的垂直上方;公共汽车为了降低汽车的质心高度和车厢地板
10、高度,以提高稳定性和乘客上下车的方便,可将轮边减速器的主动齿轮置于其从动齿轮的垂直下方;有些双层公共汽车为了进一步降低车厢地板高度,在采用圆柱齿轮轮边减速器的同时,将主减速器及差速器总成也移到一个驱动车轮的旁边。 在少数具有高速发动机的大型公共汽车、多桥驱动汽车和超重型载货汽车上, 有时采用蜗轮式主减速器,它不仅具有在质量小、尺寸紧凑的情况下可以得到大的 传动比以及工作平滑无声的优点,而且对汽车的总体布置很方便。 2.2断开式驱动桥 断开式驱动桥区别于非断开式驱动桥的明显特点在于前者没有一个连接左右驱 动车轮的刚性整体外壳或梁。断开式驱动桥的桥壳是分段的,并且彼此之间可以做 相对运动,所以这种
11、桥称为断开式的。另外,它又总是与独立悬挂相匹配,故又称 为独立悬挂驱动桥。这种桥的中段,主减速器及差速器等是悬置在车架横粱或车厢 底板上,或与脊梁式车架相联。主减速器、差速器与传动轴及一部分驱动车轮传动 装置的质量均为簧上质量。两侧的驱动车轮由于采用独立悬挂则可以彼此致立地相 对于车架或车厢作上下摆动,相应地就要求驱动车轮的传动装置及其外壳或套管作 相应摆动。 汽车悬挂总成的类型及其弹性元件与减振装置的工作特性是决定汽车行驶平顺 性的主要因素,而汽车簧下部分质量的大小,对其平顺性也有显著的影响。断开式 驱动桥的簧下质量较小,又与独立悬挂相配合,致使驱动车轮与地面的接触情况及 对各种地形的适应性
12、比较好,由此可大大地减小汽车在不平路面上行驶时的振动和 车厢倾斜,提高汽车的行驶平顺性和平均行驶速度,减小车轮和车桥上的动载荷及 零件的损坏,提高其可靠性及使用寿命。但是,由于断开式驱动桥及与其相配的独 立悬挂的结构复杂,故这种结构主要见于对行驶平顺性要求较高的一部分轿车及一 些越野汽车上,且后者多属于轻型以下的越野汽车或多桥驱动的重型越野汽车。 2.3多桥驱动的布置 为了提高装载量和通过性,有些重型汽车及全部中型以上的越野汽车都是采用 多桥驱动,常采用的有4 4、66、88 等驱动型式。在多桥驱动的情况下,动力 经分动器传给各驱动桥的方式有两种。相应这两种动力传递方式,多桥驱动汽车各 驱动桥
13、的布置型式分为非贯通式与贯通式。前者为了把动力经分动器传给各驱动桥, 需分别由分动器经各驱动桥自己专用的传动轴传递动力,这样不仅使传动轴的数量 增多,且造成各驱动桥的零件特别是桥壳、半轴等主要零件不能通用。而对 8 8 汽车来说,这种非贯通式驱动桥就更不适宜,也难于布置了。 为了解决上述问题,现代多桥驱动汽车都是采用贯通式驱动桥的布置型式。在 贯通式驱动桥的布置中,各桥的传动轴布置在同一纵向铅垂平面内,并且各 驱动桥不是分别用自己的传动轴与分动器直接联接,而是位于分动器前面的或后面的 各相邻两桥的传动轴,是串联布置的。汽车前后两端的驱动桥的动力,是经分动器并 贯通中间桥而传递的。其优点是,不仅
14、减少了传动轴的数量,而且提高了各驱 动桥零件的相互通用性,并且简化了结构、减小了体积和质量。这对于汽车的设计 ( 如汽车的变型 ) 、制造和维修,都带来方便。 由于非断开式驱动桥结构简单、造价低廉、工作可靠,查阅资料,参照国内相 3/34 YC1090 货车驱动桥的设计 关货车的设计 , 最后本课题选用非断开式驱动桥。 其结构如图 2-1 所示: 1半轴2圆锥滚子轴承3支承螺栓4主减速器从动锥齿轮5油封6主减速器主动锥齿轮7弹簧座8垫圈9轮毂10调整螺母 图 2-1 驱动桥 3主减速器设计 主减速器是汽车传动系中减小转速、增大扭矩的主要部件,它是依靠齿数少的 锥齿轮带动齿数多的锥齿轮。对发动机
15、纵置的汽车,其主减速器还利用锥齿轮传动 以改变动力方向。由于汽车在各种道路上行使时,其驱动轮上要求必须具有一定的 驱动力矩和转速,在动力向左右驱动轮分流的差速器之前设置一个主减速器后,便 可使主减速器前面的传动部件如变速器、万向传动装置等所传递的扭矩减小,从而 可使其尺寸及质量减小、操纵省力。 驱动桥中主减速器、差速器设计应满足如下基本要求: a)所选择的主减速比应能保证汽车既有最佳的动力性和燃料经济性。 b)外型尺寸要小,保证有必要的离地间隙;齿轮其它传动件工作平稳,噪音小。 c)在各种转速和载荷下具有高的传动效率;与悬架导向机构与动协调。 d)在保证足够的强度、刚度条件下,应力求质量小,以
16、改善汽车平顺性。 e)结构简单,加工工艺性好,制造容易,拆装、调整方便。 3.1主减速器结构方案分析 主减速器的结构形式主要是根据齿轮类型、减速形式的不同而不同。 3.1.1螺旋锥齿轮传动 图 3-1 螺旋锥齿轮传动 按齿轮副结构型式分,主减速器的齿轮传动主要有螺旋锥齿轮式传动、双曲面 齿轮式传动、圆柱齿轮式传动(又可分为轴线固定式齿轮传动和轴线旋转式齿轮传 动即行星齿轮式传动)和蜗杆蜗轮式传动等形式。 在发动机横置的汽车驱动桥上,主减速器往往采用简单的斜齿圆柱齿轮;在发 动机纵置的汽车驱动桥上,主减速器往往采用圆锥齿轮式传动或准双曲面齿轮式传动。 为了减少驱动桥的外轮廓尺寸,主减速器中基本不
17、用直齿圆锥齿轮而采用螺旋 锥齿轮。因为螺旋锥齿轮不发生根切(齿轮加工中产生轮齿根部切薄现象,致使齿轮 强度大大降低)的最小齿数比直齿轮的最小齿数少,使得螺旋锥齿轮在同样的传动比 下主减速器结构较紧凑。此外,螺旋锥齿轮还具有运转平稳、噪声小等优点, 5/34 YC1090 货车驱动桥的设计 汽车上获得广泛应用。 近年来,有些汽车的主减速器采用准双曲面锥齿轮(车辆行业中简称双曲面传 动)传动。准双曲面锥齿轮传动与圆锥齿轮相比,准双曲面齿轮传动不仅工作平稳性 更好,弯曲强度和接触强度更高,同时还可使主动齿轮的轴线相对于从动齿轮轴线偏 移。当主动准双曲面齿轮轴线向下偏移时,可降低主动锥齿轮和传动轴位置
18、, 从而有利于降低车身及整车重心高度,提高汽车行使的稳定性。东风 EQ1090E型汽车即采用下偏移准双曲面齿轮。但是,准双曲面齿轮传递转矩时,齿面间有较大的 相对滑动,且齿面间压力很大,齿面油膜很容易被破坏。为减少摩擦,提高效率, 必须采用含防刮伤添加剂的双曲面齿轮油,绝不允许用普通齿轮油代替,否则将时 齿面迅速擦伤和磨损,大大降低使用寿命。 查阅文献 1 、2 ,经方案论证,主减速器的齿轮选用螺旋锥齿轮传动形式(如 图 3-1 示)。螺旋锥齿轮传动的主、从动齿轮轴线垂直相交于一点,齿轮并不同时 在全长上啮合,而是逐渐从一端连续平稳地转向另一端。另外,由于轮齿端面重叠 的影响,至少有两对以上的
19、轮齿同时捏合,所以它工作平稳、能承受较大的负荷、 制造也简单。为保证齿轮副的正确啮合,必须将支承轴承预紧,提高支承刚度,增 大壳体刚度。 3.1.2结构形式 为了满足不同的使用要求,主减速器的结构形式也是不同的。 按参加减速传动的齿轮副数目分,有单级式主减速器和双级式主减速器、双速 主减速器、双级减速配以轮边减速器等。双级式主减速器应用于大传动比的中、重 型汽车上,若其第二级减速器齿轮有两副,并分置于两侧车轮附近,实际上成为独 立部件,则称轮边减速器。单级式主减速器应用于轿车和一般轻、中型载货汽车。 单级主减速器由一对圆锥齿轮组成,具有结构简单、质量小、成本低、使用简单等 优点。 查阅文献 1 、2 ,经方案论证,本设计主减速器采用单级主减速器。其传动 比 i 0一般小于等于 7。 3.2主减速器主、从动锥齿轮的支承方案 主减速器中心必须保证主从动齿轮具有良好的啮合状况,才能使它们很好地工 作。齿轮的正确啮合,除了与齿轮的加工质量装配调整及轴承主减速器壳体的刚度 有关以外,还与齿轮的支承刚度密切相关。 3.2.1主动锥齿轮的支承