《2012年高考试题文科数学分类汇编-数列.doc》由会员分享,可在线阅读,更多相关《2012年高考试题文科数学分类汇编-数列.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-2012年高考试题分类汇编:数列一、选择题1.【2012高考安徽文5】公比为2的等比数列 的各项都是正数,且 =16,则=(A) 1 (B)2 (C) 4 (D)8【答案】A 2.【2012高考全国文6】已知数列的前项和为,,则(A) (B) (C) (D) 【答案】B 3.【2012高考新课标文12】数列an满足an+1(1)n an 2n1,则an的前60项和为(A)3690 (B)3660 (C)1845 (D)1830【答案】D4.【2012高考辽宁文4】在等差数列an中,已知a4+a8=16,则a2+a10=(A) 12 (B) 16 (C) 20 (D)24【答案】B【点评】本题
2、主要考查等差数列的通项公式、同时考查运算求解能力,属于容易题。5.【2012高考湖北文7】定义在(-,0)(0,+)上的函数f(x),如果对于任意给定的等比数列an,f(an)仍是等比数列,则称f(x)为“保等比数列函数”。现有定义在(-,0)(0,+)上的如下函数:f(x)=x;f(x)=2x;f(x)=ln|x |。则其中是“保等比数列函数”的f(x)的序号为A. B. C. D.7. 【答案】C 6.【2012高考四川文12】设函数,数列是公差不为0的等差数列,则( )A、0 B、7 C、14 D、21 【答案】D.7.【2102高考福建文11】数列an的通项公式,其前n项和为Sn,则S
3、2012等于 A.1006 B.2012 C.503 D.0【答案】A 8.【2102高考北京文6】已知为等比数列,下面结论种正确的是(A)a1+a32a2 (B) (C)若a1=a3,则a1=a2(D)若a3a1,则a4a2【答案】B 9.【2102高考北京文8】某棵果树前n年的总产量Sn与n之间的关系如图所示,从目前记录的结果看,前m年的年平均产量最高,m的值为(A)5(B)7(C)9(D)11【答案】C 二、填空题10.【2012高考重庆文11】首项为1,公比为2的等比数列的前4项和 【答案】15 11.【2012高考新课标文14】等比数列an的前n项和为Sn,若S3+3S2=0,则公比
4、q=_【答案】 12.【2012高考江西文13】等比数列an的前n项和为Sn,公比不为1。若a1=1,且对任意的都有an2an1-2an=0,则S5=_。 【答案】11 13.【2012高考上海文7】有一列正方体,棱长组成以1为首项、为公比的等比数列,体积分别记为,则 【答案】。【解析】由题意可知,该列正方体的体积构成以1为首项,为公比的等比数列,+=,。14.【2012高考上海文14】已知,各项均为正数的数列满足,若,则的值是 【答案】。 15.【2012高考辽宁文14】已知等比数列an为递增数列.若a10,且2(a n+a n+2)=5a n+1 ,则数列an的公比q = _.【答案】2
5、16.【2102高考北京文10】已知an为等差数列,Sn为其前n项和,若,S2=a3,则a2=_,Sn=_。【答案】,17.【2012高考广东文12】若等比数列满足,则 .【答案】三、解答题18.【2012高考浙江文19】(本题满分14分)已知数列an的前n项和为Sn,且Sn=,nN,数列bn满足an=4log2bn3,nN.(1)求an,bn;(2)求数列anbn的前n项和Tn.【解析】(1) 由Sn=,得当n=1时,;当n2时,nN.由an=4log2bn3,得,nN.(2)由(1)知,nN所以,nN.19.【2012高考江苏20】(16分)已知各项均为正数的两个数列和满足:,(1)设,求
6、证:数列是等差数列;(2)设,且是等比数列,求和的值【答案】解:(1),。 。 。 数列是以1 为公差的等差数列。(2),。 。()设等比数列的公比为,由知,下面用反证法证明 若则,当时,与()矛盾。 若则,当时,与()矛盾。 综上所述,。,。 又,是公比是的等比数列。 若,则,于是。又由即,得。 中至少有两项相同,与矛盾。 。 。【考点】等差数列和等比数列的基本性质,基本不等式,反证法。【解析】(1)根据题设和,求出,从而证明而得证。 (2)根据基本不等式得到,用反证法证明等比数列的公比。从而得到的结论,再由知是公比是的等比数列。最后用反证法求出。20【2012高考四川文20】(本小题满分1
7、2分) 已知数列的前项和为,常数,且对一切正整数都成立。()求数列的通项公式;()设,当为何值时,数列的前项和最大? 【解析】21.【2012高考湖南文20】(本小题满分13分)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50.预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d万元,并将剩余资金全部投入下一年生产.设第n年年底企业上缴资金后的剩余资金为an万元.()用d表示a1,a2,并写出与an的关系式;()若公司希望经过m(m3)年使企业的剩余资金为4000万元,试确定企业每年上缴资金d的
8、值(用m表示).【答案】【解析】()由题意得,.()由()得.整理得.由题意,解得.故该企业每年上缴资金的值为缴时,经过年企业的剩余资金为元.【点评】本题考查递推数列问题在实际问题中的应用,考查运算能力和使用数列知识分析解决实际问题的能力.第一问建立数学模型,得出与an的关系式,第二问,只要把第一问中的迭代,即可以解决.22.【2012高考重庆文16】(本小题满分13分,()小问6分,()小问7分)已知为等差数列,且()求数列的通项公式;()记的前项和为,若成等比数列,求正整数的值。 【解析】()设数列 的公差为d,由题意知 解得所以()由()可得 因 成等比数列,所以 从而 ,即 解得 或(
9、舍去),因此 。23.【2012高考陕西文16】已知等比数列的公比为q=-.(1)若=,求数列的前n项和;()证明:对任意,成等差数列。【答案】24.【2012高考湖北文20】(本小题满分13分)已知等差数列an前三项的和为-3,前三项的积为8.(1) 求等差数列an的通项公式;(2)若a2,a3,a1成等比数列,求数列错误!不能通过编辑域代码创建对象。的前n项和。20. 【答案】 【解析】本题考查等差数列的通项,求和,分段函数的应用等;考查分类讨论的数学思想以及运算求解的能力.求等差数列的通项一般利用通项公式求解;有时需要利用等差数列的定义:(为常数)或等比数列的定义:(为常数,)来判断该数
10、列是等差数列或等比数列,然后再求解通项;有些数列本身不是等差数列或等比数列,但它含有无数项却是等差数列或等比数列,这时求通项或求和都需要分段讨论.来年需注意等差数列或等比数列的简单递推或等差中项、等比中项的性质.25.【2012高考天津文科18】 (本题满分13分)已知a1是等差数列,其前项和为,bn是等比数列,且a1=b1=2,sa-sb=10(I)求数列an与bn的通项公式;(II)记Ta=a1b1+a2+b1+.an+bn,nNn,证明TN-8=an-1bn-1,(nna,n2)。【答案】26.【2012高考山东文20】 (本小题满分12分)已知等差数列的前5项和为105,且.()求数列
11、的通项公式;()对任意,将数列中不大于的项的个数记为.求数列的前m项和.【答案】 (I)由已知得:解得,所以通项公式为.(II)由,得,即.,是公比为49的等比数列,.27.【2012高考全国文18】(本小题满分12分)(注意:在试题卷上作答无效)已知数列中, ,前项和。()求,; ()求的通项公式。 【答案】28.【2012高考安徽文21】(本小题满分13分)设函数=+的所有正的极小值点从小到大排成的数列为.()求数列的通项公式;()设的前项和为,求。【答案】【解析】(I),得:当时,取极小值,得:。(II)由(I)得:。当时,当时,当时,得: 当时,当时,当时,。【2012高考上海文23】
12、(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分对于项数为的有穷数列,记(),即为中的最大值,并称数列是的控制数列,如1,3,2,5,5的控制数列是1,3,3,5,5(1)若各项均为正整数的数列的控制数列为2,3,4,5,5,写出所有的(2)设是的控制数列,满足(为常数,),求证:()(3)设,常数,若,是的控制数列,求【答案】【2012高考广东文19】(本小题满分14分)设数列前项和为,数列的前项和为,满足,.(1)求的值;(2)求数列的通项公式.【答案】【解析】(1)当时,。因为,所以,求得。(2)当时, 所以 所以 得 , 所以,即, 求得,则。所
13、以是以3为首项,2为公比的等比数列, 所以, 所以,。【2102高考福建文17】(本小题满分12分) 在等差数列an和等比数列bn中,a1=b1=1,b4=8,an的前10项和S10=55.()求an和bn;()现分别从an和bn的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率。【答案】【2012高考江西文17】(本小题满分12分)已知数列|an|的前n项和(其中c,k为常数),且a2=4,a6=8a3(1)求an;(2)求数列nan的前n项和Tn。 【答案】【解析】(1)当时,则,c=2.a2=4,即,解得k=2,(n)1)当n=1时,综上所述(2) ,则(1)-(2)得