《2022年方程的根与函数的零点教学设计获奖 .pdf》由会员分享,可在线阅读,更多相关《2022年方程的根与函数的零点教学设计获奖 .pdf(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、方程的根与函数的零点一、 教学内容分析本节课选自普通高中课程标准实验教课书数学I 必修本( A 版) 第 94-95 页的第三章第一课时3.1.1 方程的根与函数的的零点。函数与方程是中学数学的重要内容,既是初等数学的基础, 又是初等数学与高等数学的连接纽带。 在现实生活注重理论与实践相结合的今天,函数与方程都有着十分重要的应用, 再加上函数与方程还是中学数学四大数学思想之一,因此函数与方程在整个高中数学教学中占有非常重要的地位。就本章而言,本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般, 将其推广到
2、一般方程与相应的函数的情形它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。 之后将函数零点与方程的根的关系在利用二分法解方程中(3.1.2)加以应用, 通过建立函数模型以及模型的求解(3.2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系渗透“ 方程与函数 ” 思想。总之,本节课渗透着重要的数学思想“ 特殊到一般的归纳思想” “方程与函数 ” 和“ 数形结合 ” 的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。二 学生学习情况分析地理位置:学生大多来自市区,学生接触面较广,个性较活跃,所以开始可采用竞赛的形式调动学生积
3、极性; 学生数学基础的差异不大, 但进一步钻研的精神相差较大,所以可适当对知识点进行拓展。程度差异性:中低等程度的学生占大多数,程度较高与程度很差的学生占少数。知识、心理、能力储备:学生之前已经学习了函数的图象和性质,现在基本会画简单函数的图象, 也会通过图象去研究理解函数的性质,这就为学生理解函数的零点提供了帮助,初步的数形结合知识也足以让学生直观理解函数零点的存在性,因此从学生熟悉的二次函数的图象入手介绍函数的零点,从认知规律上讲,应该是容易理解的。 再者一元二次方程是初中的重要内容,学生应该有较好的基础对于它根的个数以及存在性学生比较熟悉,学生理解起来没有多大问题。 这也为我们归纳函数的
4、零点与方程的根联系提供了知识基础。但是学生对其他函数的图象与性质认识不深(比如三次函数) ,对于高次方程还不熟悉,我们缺乏更多类型的例子, 让学生从特殊到一般归纳出函数与方程的内在联系,因此理解函数的零点、函数的零点与方程根的联系应该是学生学习的难点。加之函数零点的存在性的判定方法的表示抽象难懂。因此在教学中应加强师生互动, 尽多的给学生动手的机会, 让学生在实践中体验二者的联系,并充分提供不同类型的二次函数和相应的一元二次方程让学生研讨,从而直观地归纳、 总结、分析出二者的联系。三 设计思想教学理念:培养学生学习数学的兴趣,学会严密思考,并从中找到乐趣教学原则:注重各个层面的学生教学方法:启
5、发诱导式四、教学目标以二次函数的图象与对应的一元二次方程的关系为突破口,探究方程的根与函数精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 7 页的零点的关系, 发现并掌握在某区间上图象连续的函数存在零点的判定方法;学会在某区间上图象连续的函数存在零点的判定方法。让学生在探究过程中体验发现的乐趣, 体会数形结合的数学思想, 从特殊到一般的归纳思想, 培养学生的辨证思维以及分析问题解决问题的能力。五、教学重点难点重点: 函数零点与方程根之间的关系; 连续函数在某区间上存在零点的判定方法。难点:发现与理解方程的根与函数零点的关系;探究发现函数
6、存在零点的方法。六、教学程序设计1 方程的根与函数的零点以及零点存在性的探索1.1 方程的根与函数的零点问题 1:解方程(比赛):6x1=0 ;3x6x1=0 。再比赛解 3x36x1=0 设计意图:问题 1(产生疑问,引起兴趣,引出课题)比赛模式引入, 调动积极性, 可根据学分评定中进行过程性评定加分奖励,充分调动学生积极性和主动性。第三题学生无法解答, 产生疑惑引入课题: 教师介绍说一次方程、 二次方程甚至三次方程、四次方程的解都可以通过系数的四则运算,乘方与开方等运算来表示,但高于四次的方程一般不能用公式求解,如3x6x1=0 紧接着介绍阿贝尔(挪威)定理(五次及高于五次的代数方程没有一
7、般的代数解法),伽罗瓦(法国)的近世代数理论, 提出早在十三世纪的中国, 秦九韶等数学家就提出了高次方程数值解的解法, 振奋学生的民族自豪感, 最后引出人们一直在研究方程的近似解方法二分法引入课题。问题 2:先来观察几个具体的一元二次方程的根及其相应的二次函数的图象:如图 7-1 1 方程与函数2 方程与函数3 方程与函数师生互动 师:教师引导学生解方程、 画函数图象、 分析方程的根与图象和x 轴交点坐标的关系,推广到一般的方程和函数引出零点概念。零点概念:对于函数yf(x) (xD) ,把使 f(x)0 成立的实数 x 叫做函数yf(x) (xD)的。师:填表格图 7-1 生:经过独立思考,
8、填完表格师提示:根据零点概念,提出问题,零点是点吗?零点与函数方程的根有何关系?生:经过观察表格,得出第一个结论精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 7 页师再问:根据概念,函数yf(x)的零点与函数yf(x)的图象与 x 轴交点有什么关系生:经过观察图像与x 轴交点完成解答,得出第二个结论师:概括总结前两个结论(请学生总结) 。1 )概念:函数的零点并不是“ 点” ,它不是以坐标的形式出现,而是实数。例如函数的零点为 x=-1,3 2) 函数零点的意义:函数的零点就是方程实数根, 亦即函数的图象与 x 轴交点的横坐标3)方程
9、有实数根函数的图象与 x 轴有交点函数有零点。师:引导学生仔细体会上述结论。再提出问题:如何并根据函数零点的意义求零点?生:可以解方程而得到(代数法);可以利用函数的图象找出零点(几何法)问题 2 一方面让学生理解函数零点的含义, 另一方面通过对比让学生再次加深对二者关系的认识,使函数图象与 x 轴交点的横坐标到函数零点的概念转变变得更自然、更易懂。通过对比教学揭示知识点之间的密切关系。问题 3:是不是所有的二次函数都有零点?师:仅提出问题,不须做任何提示。生:根据函数零点的意义探索研究二次函数的零点情况,并进行交流, 总结概括形成结论二次函数的零点:看 ) ,方程有两不等实根,二次函数的图象
10、与x 轴有两个交点,二次函数有两个零点) ,方程有两相等实根(二重根) ,二次函数的图象与x精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 7 页轴有一个交点,二次函数有一个二重零点或二阶零点) ,方程无实根,二次函数的图象与x 轴无交点,二次函数无零点第一阶段设计意图本节的前半节一直以二次函数作为模本研究,此题是从特殊到一般的升华, 也全面总结了二次函数零点情况, 给学生一个清晰的解题思路。 进而培养学生归纳总结能力。1.2 零点存在性的探索师生互动 师:要求生用连续不断的几条曲线连接如图4 A、B 两点,观察所画曲线与直线 l 的相
11、交情况,由两个学生上台板书:A a b B 图 4 生:两个学生画出连接A、B 两点的几条曲线后发现这些曲线必与直线l 相交。师:再用连续不断的几条函数曲线连接如图A、B 两点,引导学生观察所画曲线与直线 l 的相交情况,说明连接A、B 两点的函数曲线交点必在区间(a,b) 内。l 生:观察下面函数f(x)0 的图象(如图 5)并回答图 5 区间 a,b上_(有/无)零点; f(a) f(b)_0(或)。 区间 b,c上_(有/无)零点;f (b) f (c)_0 (或)。 区间 c,d上_(有/无)零点; f(c) f(d)_0(或)。 师:教师引导学生结合函数图象,分析函数在区间端点上的函
12、数值的符号情况,与函数零点是否存在之间的关系。生:根据函数零点的意义结合函数图象,归纳得出函数零点存在的条件,并进行交流、评析总结概括形成结论)一般地,我们有:如果函数yf(x)在区间 a,b上的图象是连续不断的一条曲线并且有 f(a) f(b)<0 ,那么函数 yf(x)在区间( a,b)内有零点,即存在 c (a,b) ,使得 f(c)=0,这个 c 也就是方程 f(x)0 的根。第二阶段设计意图:教师引导学生探索归纳总结函数零点存在定理,培养归纳总结能力和逻辑思维2、例范研究例 1.已知函数 f(x)= 3x56x1 有如下对应值表:精选学习资料 - - - - - - - - -
13、 名师归纳总结 - - - - - - -第 4 页,共 7 页函数 yf(x)在哪几个区间内必有零点?为什么?设计意图通过本例引导探索,师生互动探求 1:如果函数 y f(x)在区间 a,b上的图象是连续不断的一条曲线,并且有 f(a) f(b)>0 时,函数在区间( a,b)内没有零点吗 ? 探求 2:如果函数 yf(x)在区间 a,b上的图象是一条连续不断的曲线,并且有 f(a) f(b)<0 时,函数在区间( a,b)内有零点,但是否只一个零点?探求 3:如果函数 yf(x)在区间 a,b上的图象是一条连续不断的曲线,并且函数在区间( a,b)内有零点时一定有f(a) f(
14、b)<0 ?探求 4:如果函数 yf(x)在区间 a,b上的图象不是一条连续不断的曲线,函数在区间( a,b)内有零点时一定有f(a) f(b)<0 ?图 5(反例)师:总结两个条件:1)函数 y f(x)在区间 a,b上的图象是连续不断的一条曲线2)在区间 a,b上有 f(a) f(b)<0 一个结论:函数 yf(x)在区间 a,b内单调则函数在这个区间内有且只有一个零点补充:什么时候只有一个零点?(观察得出)函数yf(x)在区间 a,b内单调时只有一个零点例 2求函数的零点个数问题:1)你可以想到什么方法来判断函数零点个数?2)判断函数的单调性,由单调性你能得该函数的单调
15、性具有什么特性?第三阶段设计意图:教师引导学生理解函数零点存在定理,分析其中各条件的作用,应用例 1,例 2加深对定理的理解3、练习尝试 (可根据时间和学生对知识的接受程度适当调整) 1求函数,并画出它的大致图象2利用函数图象判断下列方程有没有根,有几个根:(1); (2);3利用函数的图象,指出下列函数零点所在的大致区间:(1); (2);师生互动 师:多媒体演示; 结合图象考察零点所在的大致区间与个数,结合函数的单调性说明零点的个数; 让学生认识到函数的图象及基本性质(特别是单调性) 在确定函数零点中的重要作用精选学习资料 - - - - - - - - - 名师归纳总结 - - - -
16、- - -第 5 页,共 7 页生:建议学生使用计算器求出函数的大致区间,培养学生的估算能力, 也为下一节的用二分法求方程的近似解做准备。第四阶段设计意图: 利用练习巩固新知识, 加深理解, 为用二分法求方程的近似解做准备4、探索研究 (可根据时间和学生对知识的接受程度适当调整) 讨论:请大家给方程的一个解的大约范围,看谁找得范围更小?师生互动 师:把学生分成小组共同探究,给学生足够的自主学习时间,让学生充分研究,发挥其主观能动性。 也可以让各组把这几个题做为小课题来研究,激发学生学习潜能和热情。 老师用多媒体演示, 直观地演示根的存在性及根存在的区间大小情况。生:分组讨论,各抒己见。在探究学
17、习中得到数学能力的提高第五阶段设计意图:一是为用二分法求方程的近似解做准备二是小组探究合作学习培养学生的创新能力和探究意识,本组探究题目就是为了培养学生的探究能力, 此组题目具有较强的开放性,探究性,基本上可以达到上述目的。5 课堂小结:零点概念零点存在性的判断零点存在性定理的应用注意点:零点个数判断以及方程根所在区间6 作业回馈教材 P108习题 31(A 组)第 1、2 题;思考:总结函数零点求法要注意的问题;思考可以用求函数零点的方法求方程的近似解吗?教学程序设计框图:分析教材设计意图,探讨教学规律;探索合理教学思想,提出教学建议。循序渐进的原则, 分三步来展开这部分零点的联系,然后将其
18、推广到一般方程与相应的函数的情形。第二步,在用二分法求方程近似解的过程中,通过函数图象和性质研究方程的解,体现函数与方程的关系。 第三步,在函数模型的应用过程中, 通过建立函数模型以及模型的求解,更全面地体现函数与方程的关系逐步建立起函数与方程的联系。本节只是函数与方程的关系建立的第一步,教学中忌面面具到,延展太深。恰当使用信息技术: 本节的教学中应当充分使用信息技术。实际上,一些内容因为涉及大数字运算、 大量的数据处理、 超越方程求解以及复杂的函数作图,因此精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 7 页如果没有信息技术的支持,
19、 教学是不容易展开的。 因此,教学中会加强信息技术的使用力度,合理使用多媒体和计算器。泉州九中陈美珠点评本节课在尝试解答五次方程失败后,教师用浓缩的数学史的简介活跃了课堂气氛,使学生受到数学文化的熏陶,并产生探索新知识的欲望。紧接着,借助二次函数的图象与 x 轴是否有交点的事实与一元二次方程的根的关系出发,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形,引入了函数零点的定义, 体现了从具体到一般的思维过程。 随后,利用函数图像和几个填空题引导探索函数零点的存在,初步得到函数零点存在的判定方法,体现了数形结合的思想方法。 为了多角度深刻理解函数零点存在
20、定理的内涵,教师构造了 4 个探究问题。 4 个探究问题是本节课亮点, 例子设计精巧,层层递进,由此引发了学生积极的思考、探索与交流。设计中体现了师生主动参与体验的有机结合,激发了学生探索新知的兴趣, 重点突出,容量适中,由浅入深,环环相扣。整个教学过程教师只是指导、点评,充分展示知识发生、发展的过程,由学生自主建构,在此过程中获得对知识的亲身体验,把教学的主动权给了学生, 鼓励学生自主探索、研究性学习,使学生成为真正意义上的学习主人。值得商讨的是,在给出函数零点的概念后,要让学生明确“ 方程的根 ” 与“ 函数的零点” 尽管有密切的联系,但不能将它们混为一谈。这是个难点,教师未能在此有所突破。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 7 页