《2022年人教版数学七年级下册经典知识点 2.pdf》由会员分享,可在线阅读,更多相关《2022年人教版数学七年级下册经典知识点 2.pdf(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第五章相交线与平行线概念定义及性质公理:1、在平面内,不重合的两条直线的位置关系只有两种:相交与平行。2、互为邻补角:( 1)定义:如果两个角有一条公共边且有一个公共顶点,它们的另一边互为反向延长线,具有这种关系的两个角互为邻补角。(2)性质:从位置看:互为邻角;从数量看:互为补角;3、互为对顶角:( 1)定义:如果两个角有有一个公共顶点且它们的两边互为反向延长线,具有这种关系的两个角互为对顶角。(2)性质:对顶角相等4、垂直:( 1)定义:垂直是相交的一种特殊情形。当两条直线相交所形成的四个角中有一个角是直角,那么这两条直线互相垂直。它们交点叫做垂足。其中的一条直线叫做另一条直线的垂线。(2
2、)性质:过一点有且只有一条直线和已知直线垂直。(3)表示方法:用符号“”表示垂直。5、任何一个“定义”既可以做判定,又可以做性质。6、垂线是一条直线,垂线段是垂线的一部分。7、垂线段的性质:连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短) 。8、区分:点到直线的距离:直线外一点到这条直线的垂线段的长度。两点间的距离:连接两点间的线段的长度。“两点间的距离”和“点到直线的距离”是两个不同的概念,但是“点到直线的距离”是“两点间的距离”的一种特殊情况。9、内错角的定义:两个角都在截线的两侧,都在被截直线之间。这样的两个角叫做内错角。10、同位角的定义:两个角都在截线的同侧
3、,都在被截直线的同一方。这样的两个角叫做同位角。11、同旁内角的定义:两个角都在截线的同侧,都在被截直线之间。这样的两个角叫做同旁内角。12、截线与被截直线的定义:截线就是截断两条同一方向直线的直线,被截直线就是被截线所截断的两条同一方向的直线。13、相交线的定义:在平面内有一个公共交点的两条直线,叫做相交线。14、平行线:(1)定义:在平面内不相交的两条直线,叫做平行线。(2)表示方法:用符号“”表示平行。( 3)公理:经过直线外一点,有且只有一条直线与已知直线平行(这个公理说明了平行线的存在性和唯一性)。(4)推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。(5)判定 1:
4、两条直线被第三条直线所截,如果同位角相等,那么这两条直线互相平行(简单说成:同位角相等,两直线平行)。判定 2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线互相平行(简单说成:内错角相等,两直线平行)。判定 3:两条直线被第三条直线所截,如果同旁内角相等,那么这两条直线互相平行(简单说成:同旁内角相等,两直线平行)。判定 4:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行。(6)性质 1:如果两条平行直线被第三条直线所截,那么同位角相等(简单说成:两直线平行,同位角相等)。性质 2:如果两条平行直线被第三条直线所截,那么内错角相等(简单说成:两直线平行,内错角
5、相等)。性质 3:如果两条平行直线被第三条直线所截,那么同旁内角相等(简单说成:两直线平行,同旁内角相等)。15、命题(1)定义:表示判断一件事情的语句,叫做命题。(2)分类:命题分为真命题:正确的命题。假命题:错误的命题。( 3)组成:命题是由条件(题设)和结论两部分组成。条件(题设)是已知事项,结论是由已知事项推精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 7 页出的事项。(4)定理:通过推理证实过的真命题叫做定理。定理也可以作为继续推理的依据。16、平移:(1)定义:在平面内将一个图形沿某个方向移动一定的距离,这样的图形运动称为
6、平移变换,简称平移。(2)性质 1:平移不改变图形的形状和大小,只改变图形的位置。性质 2:经过平移对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。(3)作图步骤:1、按照题目要求,确定平移方向和距离;2、找出所作图形的关键点,例如顶点; 3、沿确定的方向和距离平移所有关键点; 4、联结平移后的关键点并标出对应字母。第六章实数知识点总结一、算术平方根1. 算术平方根的定义 : 一般地,如果一个正数x 的 平方 等于 a,即ax2,那么这个 正数 x 叫做 a 的算术平方根 a 的算术平方根记为a,读作 “ 根号 a” ,a 叫做 被开方数规定: 0 的算术平方根是0. 也就是,在等
7、式ax2(x 0) 中,规定ax。2. a的结果有 两种情况:当 a 是完全平方数 时,a是一个 有限数;当 a 不是一个完全平方数时,a是一个 无限不循环小数。3. 当被开方数扩大时,它的 算术平方根 也扩大;当被开方数缩小时与它的算术平方根也缩小 。4. 夹值法 及估计一个(无理)数的大小5.ax2(x 0) axa 是 x 的平方x 的平方是a x 是 a 的算术平方根a 的算术平方根是x 二、平方根1. 平方根 的定义:如果 一个数 x 的平方 等于 a,那么这个数x 就叫做 a 的平方根 即:如果ax2,那么 x 叫做 a 的 平方根2.开平方 的定义:求一个数的平方根 的运算 ,叫
8、做 开平方开平方运算的 被开方数 必须是 非负数 才有意义。3. 平方 与开平方互为逆运算:3 的平方等于9, 9 的平方根是34. 一个 正数 有两个平方根,即正数 进行 开平方 运算有 两个 结果 ;一个 负数没有平方根,即负数不能 进行 开平方 运算5. 符号:正数a 的正的平方根 可用a表示,a也是 a 的算术平方根;正数 a 的负的平方根 可用 -a表示 6. 平方根 和算术平方根 两者既有区别又有联系:区别在于 正数的平方根有两个,而它的 算术平方根只有一个;联系在于 正数 的正平方根 就是它的 算术平方根 ,而 正数的负平方根是它的 算术平方根 的相反数。7.ax2 axa 是
9、x 的平方x 的平方是a 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 7 页x 是 a 的平方根a 的平方根是x 三、立方根1. 立方根 的定义:如果一个数 x 的立方 等于a,这个数叫做a的立方根 (也叫做 三次方根 ) ,即如果3xa,那么x叫做a的立方根2. 一个数a的立方根, 记作3a,读作: “ 三次根号a” ,其中a叫被开方数, 3 叫根指数, 不能省略 ,若省略表示平方。3. 一个 正数 有一个 正的立方根;0 有一个立方根,是它本身;一个 负数 有一个 负的 立方根 ;任何数 都有 唯一 的 立方根 。4. 利用 开
10、立方 和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数,即330aa a。5.ax3 3axa 是 x 的立方x 的立方是a x 是 a 的立方根a 的立方根是x 四、实数1. 有理数 的定义:任何有限小数 或无限循环小数也都是 有理数 。2. 无理数 的定义: 无限不循环小数叫无理数3. 实数 的定义: 有理数和无理数统称为实数整数有理数有限小数或无限循环小数实数分数无理数无限不循环小数4. 像有理数一样,无理数也有正负之分。例如2,33,是正无理数,2,33,是负无理数。由于非 0 有理数和无理数
11、都有正负之分,实数也可以这样分类:0正有理数正实数正无理数实数负有理数负实数负无理数5. 实数与数轴上点的关系:每一个无理数都可以用数轴上的一个点表示出来,数轴上的点有些表示有理数,有些表示无理数,实数与数轴上的点就是一一对应的,即 每一个实数都可以用数轴上的一个点来表示;反过来, 数轴上的每一个点都是表示一个实数。与有理数一样,对于数轴上的任意两个点,右边的 点所表示的 实数总比左边的点表示的 实数大6. 数a的相反数是a,这里a表示任意一个实数。7. 实数的绝对值:一个 正实数 的绝对值是 本身;一个 负实数 的绝对值是 它的相反数;0 的绝对值是0。精选学习资料 - - - - - -
12、- - - 名师归纳总结 - - - - - - -第 3 页,共 7 页8. 无限小数是有理数()无限小数是无理数()有理数是无限小数()无理数是无限小数()数轴上的点都可以用有理数表示()有理数都可以由数轴上的点表示()数轴上的点都可以用无理数表示()无理数都可以由数轴上的点表示()数轴上的点都可以用实数表示()实数都可以由数轴上的点表示()第七章平面直角坐标系(一)有序数对:有顺序的两个数a 与 b 组成的数对: 1、记作( a ,b) ;2、注意: a、b 的先后顺序对位置的影响。(二)平面直角坐标系:1、构成坐标系的各种名称;2、各种特殊点的坐标特点。(三)坐标方法的简单应用:1、用
13、坐标表示地理位置;2、用坐标表示平移。二、平行于坐标轴的直线的点的坐标特点:平行于 x 轴( 或横轴 ) 的直线上的点的纵坐标相同;平行于 y 轴( 或纵轴 ) 的直线上的点的横坐标相同。三、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同;第二、四象限角平分线上的点的横纵坐标相反。四、与坐标轴、原点对称的点的坐标特点:关于 x 轴对称的点的横坐标相同, 纵坐标互为相反数关于 y 轴对称的点的纵坐标相同, 横坐标互为相反数关于原点对称的点的横坐标、纵坐标都互为相反数五、特殊位置点的特殊坐标:坐标轴上点P(x, y)连线平行于坐标轴的点点 P(x,y)在各象限的坐标特点
14、象限角平分线上的点X轴Y轴原点平行X轴平 行Y轴第 一象限第 二象限第 三象限第 四象限第一、三象限第二、四象限(x,0) (0,y) (0,0) 纵坐标相同横 坐 标相同x 0 x0 x0 x0 (m,m) (m,-m) 横坐标不同纵 坐 标不同y 0 y0 y0 y0 六、利用平面直角坐标绘制区域内一些点分布情况平面图过程如下:?建立坐标系,选择一个适当的参照点为原点,确定x 轴、 y 轴的正方向;?根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;?在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。七、用坐标表示平移:见下图P(x,y)P ( x, y a)P (xa, y)P
15、 (xa, y)P ( x, y a)向上平移 a个单位长度向下平移 a个单位长度向右平移 a个单位长度向左平移 a 个单位长度精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 7 页第八章二元一次方程组1. 二元一次方程:像xy2 这样的方程中含有两个未知数(x 和 y) ,并且未知数的指数都是1,这样的方程叫做二元一次方程. 2. 二元一次方程的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 3. 二元一次方程组:把两个方程xy 3 和 2x3y10 合写在一起为像这样,把两个二元一次方程组合在一起,就
16、组成了一个二元一次方程组. 4. 二元一次方程组的解:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.5. 代入消元法:由二元一次方程组中的一个方程,把一个未知数用含另一个未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法. 6. 加减消元法:两个二元一次方程中同一个未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程. 这种方法叫做加减消元法,简称加减法. 四 1二元一次方程具备以下四个特征:(1)是方程;(2)有且只有两个未知数;(3)方程是整式方程,即各项都是整式;(4
17、)各项的最高次数为1. 2二元一次方程组含有两个未知数的两个一次方程所组成的一组方程叫做二元一次方程组,它有两个特点:一是方程组中每一个方程都是一次方程;二是整个方程组中含有两个且只含有两个未知数,如3二元一次方程的一个解符合二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解一般地二元一次方程的解有无数个,例如x+y=2 中,由于x、y 只是受这个方程的约束,并没有被取某一个特定值而制约,因此,二元一次方程有无数个解4二元一次方程组的解二元一次方程组中各个方程的公共解叫做这个二元一次方程组的解定义中的公共解是指同时使二元一次方程组中的每一个方程左右两边的值都相等,而不是使其中一个或部分
18、左右两边的值相等,由于未知数的值必须同时满足每一个方程,所以,二元一次方程组一般情况下只有惟一的一组解,即构成方程组的两个二元一次方程的公共解五三元一次方程组: (1)解三元一次方程组的基本思路是化三“元”为二“元”,再化二“元”为一“元”,即利用代入法和加减法消“元”逐步求解。(2)解三元一次方程组,除了要考虑好选择哪种方法和决定消去哪一个未知数之外,关键的一步是由三“元”化为二“元”,特别注意两次消元过程中,方程组中每个方程至少要用到1 次,并且(1) ,(2) ,(3)3 个方程中先由哪两个方程消某一个未知数,再由哪两个方程(一个是用过的)仍然消这个未知数,防止第一次消去y,第二次消去z
19、 或 x,仍然得到三元一次方程组,没有达到消“元”的目的。第九章不等式和不等式组用不等号表示不等关系的式子,叫做不等式如:21x,3-44-3,0a,02a等都是不等式五种不等号的读法及意义:(1) “”读作“不等于” ,它说明两个量之间的关系是不相等的,但不能明确哪个大哪个小;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 7 页(2) “ ”读作“大于”,表示其左边的量比右边的量大;(3) “ ,) 画空心圈知识点 4、不等式的基本性质不等式基本性质1:不等式两边都加上(或减去 ) 同一个数或同一个整式,不等号的方向不变不等式基本性
20、质2:不等式两边都乘以(或除以 ) 同一个正数,不等号的方向不变不等式基本性质3:不等式两边都乘以(或除以 ) 同一个负数,不等号的方向改变知识点 5、一元一次不等式的概念及解法一般的,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式一元一次不等式的解法:解一元一次不等式的一般步骤:去分母;去括号;移项;合并同类项;将x项的系数化为1注意:解不等式时,上面的五个步骤不一定都能用到,并且不一定按照顺序解,要根据不等式的形式灵活安排求解步骤知识点 6、一元一次不等式组的概念及解法一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一
21、次不等式组几个一元一次不等式的解集的公共部分,叫做由它们所组成的一元一次不等式组的解集求不等式组的解集的过程,叫做解不等式组当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集一元一次不等式组的解法:分别求出不等式组中各个不等式的解集;利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集求不等式组公共解的一般规律:同大取大,同小取小,一大一小中间找不等式组在数轴上表示的解集解集口诀xaxbx a 大大()取较大;xaxb小小()取较小;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 7 页xaxb大() 小小(
22、) 大取中间;xaxb空集(即无解)大() 大小() 小取不了。第十章数据的收集、整理与描述全面调查: 考察全体对象的调查方式叫做全面调查。抽样调查: 调查部分数据,根据部分来估计总体的调查方式称为抽样调查。总体: 要考察的全体对象称为总体。个体: 组成总体的每一个考察对象称为个体。样本: 被抽取的所有个体组成一个样本。样本容量: 样本中个体的数目称为样本容量。频数: 一般地,我们称落在不同小组中的数据个数为该组的频数。频率: 频数与数据总数的比为频率。组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。用直方图描述数据的步骤(即做直方
23、图的步骤)1.计算最大值与最小值的差2.决定组距与组数原则:当数据在100 个以内时,按照数据的多少,分成512 组 组距:把所有的数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围)3.列频数分布表频数:各小组内数据的个数称为频数4.画频数分布直方图5.小长方形的面积表示频数。纵轴为频数组距。等距分组时,通常直接用小长方形的高表示频数,即纵轴为“频数”6.频数分布折线图根据频数分布图画出频数分布折线图: 取每个小长方形的上边的中点,以及 x 轴上与最左、最右直方相距半个组距的点。连线精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 7 页