《2019年江苏省连云港市中考数学试卷(解析版).DOC》由会员分享,可在线阅读,更多相关《2019年江苏省连云港市中考数学试卷(解析版).DOC(37页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2019年江苏省连云港市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1(3分)2的绝对值是()A2BC2D2(3分)要使有意义,则实数x的取值范围是()Ax1Bx0Cx1Dx03(3分)计算下列代数式,结果为x5的是()Ax2+x3Bxx5Cx6xD2x5x54(3分)一个几何体的侧面展开图如图所示,则该几何体的底面是()ABCD5(3分)一组数据3,2,4,2,5的中位数和众数分别是()A3,2B3,3C4,2D4,36(3分)在如图所示的象棋盘(各个小正方形的边长均相等)中
2、,根据“马走日”的规则,“马”应落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的三角形与“帅”、“相”、“兵”所在位置的格点构成的三角形相似()A处B处C处D处7(3分)如图,利用一个直角墙角修建一个梯形储料场ABCD,其中C120若新建墙BC与CD总长为12m,则该梯形储料场ABCD的最大面积是()A18m2B18m2C24m2Dm28(3分)如图,在矩形ABCD中,AD2AB将矩形ABCD对折,得到折痕MN;沿着CM折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G下列结论:CMP是直角三角形;点C、E、G不
3、在同一条直线上;PCMP;BPAB;点F是CMP外接圆的圆心,其中正确的个数为()A2个B3个C4个D5个二、填空题(本大题共8小题,每小题3分,共24分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上)9(3分)64的立方根为 10(3分)计算(2x)2 11(3分)连镇铁路正线工程的投资总额约为46400000000元,数据“46400000000”用科学记数法可表示为 12(3分)一圆锥的底面半径为2,母线长3,则这个圆锥的侧面积为 13(3分)如图,点A、B、C在O上,BC6,BAC30,则O的半径为 14(3分)已知关于x的一元二次方程ax2+2x+2c0有两个相等的实数根,
4、则+c的值等于 15(3分)如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,1,3),按此方法,则点C的坐标可表示为 16(3分)如图,在矩形ABCD中,AB4,AD3,以点C为圆心作C与直线BD相切,点P是C上一个动点,连接AP交BD于点T,则的最大值是
5、 三、解答题(本大题共11小题,共102分请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤17(6分)计算(1)2+()118(6分)解不等式组19(6分)化简(1+)20(8分)为了解某地区中学生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,24小时(含2小时),46小时(含4小时),6小时及以上,并绘制了如图所示尚不完整的统计图(1)本次调查共随机抽取了 名中学生,其中课外阅读时长“24小时”的有 人;(2)扇形统计图中,课外阅读时长“46小时”对应的圆心角度数为 ;(3)若该地区共有20000名中学生,估计该地区
6、中学生一周课外阅读时长不少于4小时的人数21(10分)现有A、B、C三个不透明的盒子,A盒中装有红球、黄球、蓝球各1个,B盒中装有红球、黄球各1个,C盒中装有红球、蓝球各1个,这些球除颜色外都相同现分别从A、B、C三个盒子中任意摸出一个球(1)从A盒中摸出红球的概率为 ;(2)用画树状图或列表的方法,求摸出的三个球中至少有一个红球的概率22(10分)如图,在ABC中,ABAC将ABC沿着BC方向平移得到DEF,其中点E在边BC上,DE与AC相交于点O(1)求证:OEC为等腰三角形;(2)连接AE、DC、AD,当点E在什么位置时,四边形AECD为矩形,并说明理由23(10分)某工厂计划生产甲、乙
7、两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元)(1)求y与x之间的函数表达式;(2)若每生产1吨甲产品需要A原料0.25吨,每生产1吨乙产品需要A原料0.5吨受市场影响,该厂能获得的A原料至多为1000吨,其它原料充足求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润24(10分)如图,海上观察哨所B位于观察哨所A正北方向,距离为25海里在某时刻,哨所A与哨所B同时发现一走私船,其位置C位于哨所A北偏东53的方向上,位于哨所B南偏东37的方向上(1)求观察哨所A与走私
8、船所在的位置C的距离;(2)若观察哨所A发现走私船从C处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76的方向前去拦截,求缉私艇的速度为多少时,恰好在D处成功拦截(结果保留根号)(参考数据:sin37cos53,cos37sin53,tan37,tan764)25(10分)如图,在平面直角坐标系xOy中,函数yx+b的图象与函数y(x0)的图象相交于点A(1,6),并与x轴交于点C点D是线段AC上一点,ODC与OAC的面积比为2:3(1)k ,b ;(2)求点D的坐标;(3)若将ODC绕点O逆时针旋转,得到ODC,其中点D落在x轴负半轴上,判断点C是否落在函数y(x0)的图象上
9、,并说明理由26(12分)如图,在平面直角坐标系xOy中,抛物线L1:yx2+bx+c过点C(0,3),与抛物线L2:yx2x+2的一个交点为A,且点A的横坐标为2,点P、Q分别是抛物线L1、L2上的动点(1)求抛物线L1对应的函数表达式;(2)若以点A、C、P、Q为顶点的四边形恰为平行四边形,求出点P的坐标;(3)设点R为抛物线L1上另一个动点,且CA平分PCR若OQPR,求出点Q的坐标27(14分)问题情境:如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N判断线段DN、MB、EC之间的数量关系,并说明理由问题探究
10、:在“问题情境”的基础上(1)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F求AEF的度数;(2)如图3,当垂足P在正方形ABCD的对角线BD上时,连接AN,将APN沿着AN翻折,点P落在点P处,若正方形ABCD的边长为4,AD的中点为S,求PS的最小值问题拓展:如图4,在边长为4的正方形ABCD中,点M、N分别为边AB、CD上的点,将正方形ABCD沿着MN翻折,使得BC的对应边BC恰好经过点A,CN交AD于点F分别过点A、F作AGMN,FHMN,垂足分别为G、H若AG,请直接写出FH的长2019年江苏省连云港市中考数学试卷参考答案与试题解析一、选择题
11、(本大题共有8小题,每小题3分,共24分在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1(3分)2的绝对值是()A2BC2D【分析】根据负数的绝对值等于它的相反数求解【解答】解:因为|2|2,故选:C【点评】绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是02(3分)要使有意义,则实数x的取值范围是()Ax1Bx0Cx1Dx0【分析】根据二次根式的性质可以得到x1是非负数,由此即可求解【解答】解:依题意得x10,x1故选:A【点评】此题主要考查了二次根式有意义的条件,根据被开方数是非负数即可解决问题3(3
12、分)计算下列代数式,结果为x5的是()Ax2+x3Bxx5Cx6xD2x5x5【分析】根据合并同类项的法则以及同底数幂的乘法法则解答即可【解答】解:A、x2与x3不是同类项,故不能合并同类项,故选项A不合题意;B、xx5x6,故选项B不合题意;C、x6与x不是同类项,故不能合并同类项,故选项C不合题意;D、2x5x5x5,故选项D符合题意故选:D【点评】本题主要考查了合并同类项的法则:系数下降减,字母以及其指数不变4(3分)一个几何体的侧面展开图如图所示,则该几何体的底面是()ABCD【分析】根据几何体的侧面展开图可知该几何体为四棱锥,所以它的底面是四边形【解答】解:由题意可知,该几何体为四棱
13、锥,所以它的底面是四边形故选:B【点评】本题主要考查了几何体的展开图,熟练掌握棱锥的展开图是解答本题的关键5(3分)一组数据3,2,4,2,5的中位数和众数分别是()A3,2B3,3C4,2D4,3【分析】根据众数和中位数的概念求解即可【解答】解:这组数据按照从小到大的顺序排列为:2,2,3,4,5,中位数为:3,众数为:2故选:A【点评】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数6(3分)在
14、如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,“马”应落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的三角形与“帅”、“相”、“兵”所在位置的格点构成的三角形相似()A处B处C处D处【分析】确定“帅”、“相”、“兵”所在位置的格点构成的三角形的三边的长,然后利用相似三角形的对应边的比相等确定第三个顶点的位置即可【解答】解:帅”、“相”、“兵”所在位置的格点构成的三角形的三边的长分别为2、2、4;“车”、“炮”之间的距离为1,“炮”之间的距离为,“车”之间的距离为2,马应该落在的位置,故选:B【点评】本题考查了相似三角形的知识,解题的关键是利用勾股定理求
15、得三角形的各边的长,难度不大7(3分)如图,利用一个直角墙角修建一个梯形储料场ABCD,其中C120若新建墙BC与CD总长为12m,则该梯形储料场ABCD的最大面积是()A18m2B18m2C24m2Dm2【分析】过点C作CEAB于E,则四边形ADCE为矩形,CDAEx,DCECEB90,则BCEBCDDCE30,BC12x,由直角三角形的,性质得出BEBC6x,得出ADCEBE6x,ABAE+BEx+6xx+6,由梯形面积公式得出梯形ABCD的面积S与x之间的函数关系式,根据二次函数的性质直接求解【解答】解:如图,过点C作CEAB于E,则四边形ADCE为矩形,CDAEx,DCECEB90,则
16、BCEBCDDCE30,BC12x,在RtCBE中,CEB90,BEBC6x,ADCEBE6x,ABAE+BEx+6xx+6,梯形ABCD面积S(CD+AB)CE(x+x+6)(6x)x2+3x+18(x4)2+24,当x4时,S最大24即CD长为4m时,使梯形储料场ABCD的面积最大为24m2;故选:C【点评】此题考查了梯形的性质、矩形的性质、含30角的直角三角形的性质、勾股定理、二次函数的运用,利用梯形的面积建立二次函数是解题的关键8(3分)如图,在矩形ABCD中,AD2AB将矩形ABCD对折,得到折痕MN;沿着CM折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与E
17、M重合,折痕为MP,此时点B的对应点为G下列结论:CMP是直角三角形;点C、E、G不在同一条直线上;PCMP;BPAB;点F是CMP外接圆的圆心,其中正确的个数为()A2个B3个C4个D5个【分析】根据折叠的性质得到DMCEMC,AMPEMP,于是得到PME+CME18090,求得CMP是直角三角形;故正确;根据平角的定义得到点C、E、G在同一条直线上,故错误;设ABx,则AD2x,得到DMADx,根据勾股定理得到CMx,根据射影定理得到CPx,得到PCMP,故错误;求得PBAB,故,根据平行线等分线段定理得到CFPF,求得点F是CMP外接圆的圆心,故正确【解答】解:沿着CM折叠,点D的对应点
18、为E,DMCEMC,再沿着MP折叠,使得AM与EM重合,折痕为MP,AMPEMP,AMD180,PME+CME18090,CMP是直角三角形;故正确;沿着CM折叠,点D的对应点为E,DMEC90,再沿着MP折叠,使得AM与EM重合,折痕为MP,MEGA90,GEC180,点C、E、G在同一条直线上,故错误;AD2AB,设ABx,则AD2x,将矩形ABCD对折,得到折痕MN;DMADx,CMx,PMC90,MNPC,CM2CNCP,CPx,PNCPCNx,PMx,PCMP,故错误;PCx,PB2xxx,PBAB,故,CDCE,EGAB,ABCD,CEEG,CEMG90,FEPG,CFPF,PMC
19、90,CFPFMF,点F是CMP外接圆的圆心,故正确;故选:B【点评】本题考查了三角形的外接圆与外心,折叠的性质,直角三角形的性质,矩形的性质,正确的识别图形是解题的关键二、填空题(本大题共8小题,每小题3分,共24分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上)9(3分)64的立方根为4【分析】利用立方根定义计算即可得到结果【解答】解:64的立方根是4故答案为:4【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键10(3分)计算(2x)244x+x2【分析】根据完全平方公式展开3项即可【解答】解:(2x)22222x+x244x+x2故答案为:44x+x2【点评】本题主
20、要考查了完全平方公式,需要注意完全平方公式与平方差公式的区别11(3分)连镇铁路正线工程的投资总额约为46400000000元,数据“46400000000”用科学记数法可表示为4.641010【分析】利用科学记数法的表示即可【解答】解:科学记数法表示:464000000004.641010故答案为:4.641010【点评】本题主要考查科学记数法的表示,把一个数表示成a与10的n次幂相乘的形式(1a10,n为整数),这种记数法叫做科学记数法12(3分)一圆锥的底面半径为2,母线长3,则这个圆锥的侧面积为6【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥
21、的母线长和扇形的面积公式求解【解答】解:该圆锥的侧面积2236故答案为6【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长13(3分)如图,点A、B、C在O上,BC6,BAC30,则O的半径为6【分析】根据一条弧所对的圆周角等于它所对的圆心角的一半和有一角是60的等腰三角形是等边三角形求解【解答】解:BOC2BAC60,又OBOC,BOC是等边三角形OBBC6,故答案为6【点评】本题综合运用圆周角定理以及等边三角形的判定和性质14(3分)已知关于x的一元二次方程ax2+2x+2c0有两个相等的实数根,则+c的值等于2【分析】根据
22、“关于x的一元二次方程ax2+2x+2c0有两个相等的实数根”,结合根的判别式公式,得到关于a和c的等式,整理后即可得到的答案【解答】解:根据题意得:44a(2c)0,整理得:4ac8a4,4a(c2)4,方程ax2+2x+2c0是一元二次方程,a0,等式两边同时除以4a得:c2,则+c2,故答案为:2【点评】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键15(3分)如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系在建立的“三角形”坐标系内,每
23、一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,1,3),按此方法,则点C的坐标可表示为(2,4,2)【分析】根据点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,1,3)得到经过点的三条直线对应着等边三角形三边上的三个数,依次为左、右,下,即为该点的坐标,于是得到结论【解答】解:根据题意得,点C的坐标可表示为(2,4,2),故答案为:(2,4,2)【点评】本题考查了规律型:点的坐标,等边三角形的性质,找出题中的规律是解题的关键16(3分)如图,在矩形ABCD中,
24、AB4,AD3,以点C为圆心作C与直线BD相切,点P是C上一个动点,连接AP交BD于点T,则的最大值是3【分析】先判断出最大时,BE最大,再用相似三角形的性质求出BG,HG,CH,进而判断出HM最大时,BE最大,而点M在C上时,HM最大,即可HP,即可得出结论【解答】解:如图,过点P作PEBD交AB的延长线于E,AEPABD,APEATB,AB4,AEAB+BE4+BE,BE最大时,最大,四边形ABCD是矩形,BCAD3,CDAB4,过点C作CHBD于H,交PE于M,并延长交AB于G,BD是C的切线,GME90,在RtBCD中,BD5,BHCBCD90,CBHDBC,BHCBCD,BH,CH,
25、BHGBAD90,GBHDBA,BHGBAD,HG,BG,在RtGME中,GMEGsinAEPEGEG,而BEGEBGGE,GE最大时,BE最大,GM最大时,BE最大,GMHG+HM+HM,即:HM最大时,BE最大,延长MC交C于P,此时,HM最大HP2CH,GPHP+HG,过点P作PFBD交AB的延长线于F,BE最大时,点E落在点F处,即:BE最大BF,在RtGPF中,FG,BFFGBG8,最大值为1+3,故答案为:3【点评】此题主要考查了矩形的性质,圆的切线的性质,相似三角形的性质,构造出相似三角形是解本题的关键三、解答题(本大题共11小题,共102分请在答题卡指定区域内作答,解答时应写出
26、必要的文字说明、证明过程或演算步骤17(6分)计算(1)2+()1【分析】分别根据有理数乘法的法则、二次根式的性质以及负整数指数幂化简即可求解【解答】解:原式2+2+33【点评】本题考查了实数的运算法则,属于基础题,解答本题的关键是熟练掌握二次根式的化简以及负整数指数幂18(6分)解不等式组【分析】先求出两个不等式的解集,再求其公共解【解答】解:,由得,x2,由得,x2,所以,不等式组的解集是2x2【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)19(6分)化简(1+)【分析】先做括号里面
27、,再把除法转化成乘法,计算得结果【解答】解:原式【点评】本题考查了分式的混合运算解决本题的关键是掌握分式的运算顺序和分式加减乘除的运算法则20(8分)为了解某地区中学生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,24小时(含2小时),46小时(含4小时),6小时及以上,并绘制了如图所示尚不完整的统计图(1)本次调查共随机抽取了200名中学生,其中课外阅读时长“24小时”的有40人;(2)扇形统计图中,课外阅读时长“46小时”对应的圆心角度数为144;(3)若该地区共有20000名中学生,估计该地区中学生一周课外阅读时长不少于4小时的人数【分
28、析】(1)根据统计图中的数据可以求得本次调查的学生数和课外阅读时长“24小时”的人数;(2)根据统计图中的数据可以求得扇形统计图中,课外阅读时长“46小时”对应的圆心角度数;(3)根据统计图的数据可以计算出该地区中学生一周课外阅读时长不少于4小时的人数【解答】解:(1)本次调查共随机抽取了:5025%200(名)中学生,其中课外阅读时长“24小时”的有:20020%40(人),故答案为:200,40;(2)扇形统计图中,课外阅读时长“46小时”对应的圆心角度数为:360(120%25%)144,故答案为:144;(3)20000(120%)13000(人),答:该地区中学生一周课外阅读时长不少
29、于4小时的有13000人【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答21(10分)现有A、B、C三个不透明的盒子,A盒中装有红球、黄球、蓝球各1个,B盒中装有红球、黄球各1个,C盒中装有红球、蓝球各1个,这些球除颜色外都相同现分别从A、B、C三个盒子中任意摸出一个球(1)从A盒中摸出红球的概率为;(2)用画树状图或列表的方法,求摸出的三个球中至少有一个红球的概率【分析】(1)从A盒中摸出红球的结果有一个,由概率公式即可得出结果;(2)画树状图展示所有12种等可能的结果数,摸出的三个球中至少有一个红球的结果有10种,由概率公式即可得出结
30、果【解答】解:(1)从A盒中摸出红球的概率为;故答案为:;(2)画树状图如图所示:共有12种等可能的结果,摸出的三个球中至少有一个红球的结果有10种,摸出的三个球中至少有一个红球的概率为【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率22(10分)如图,在ABC中,ABAC将ABC沿着BC方向平移得到DEF,其中点E在边BC上,DE与AC相交于点O(1)求证:OEC为等腰三角形;(2)连接AE、DC、AD,当点E在什么位置时,四边形AECD为矩形,并说明理由【分析】(1)根据等腰三角形
31、的性质得出BACB,根据平移得出ABDE,求出BDEC,再求出ACBDEC即可;(2)求出四边形AECD是平行四边形,再求出四边形AECD是矩形即可【解答】(1)证明:ABAC,BACB,ABC平移得到DEF,ABDE,BDEC,ACBDEC,OEOC,即OEC为等腰三角形;(2)解:当E为BC的中点时,四边形AECD是矩形,理由是:ABAC,E为BC的中点,AEBC,BEEC,ABC平移得到DEF,BEAD,BEAD,ADEC,ADEC,四边形AECD是平行四边形,AEBC,四边形AECD是矩形【点评】本题考查了矩形的判定、平行四边形的判定、平移的性质、等腰三角形的性质和判定等知识点,能综合
32、运用知识点进行推理是解此题的关键23(10分)某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元)(1)求y与x之间的函数表达式;(2)若每生产1吨甲产品需要A原料0.25吨,每生产1吨乙产品需要A原料0.5吨受市场影响,该厂能获得的A原料至多为1000吨,其它原料充足求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润【分析】(1)利润y(元)生产甲产品的利润+生产乙产品的利润;而生产甲产品的利润生产1吨甲产品的利润0.3万元甲产品的吨数x,即0.3x万
33、元,生产乙产品的利润生产1吨乙产品的利润0.4万元乙产品的吨数(2500x),即0.4(2500x)万元(2)由(1)得y是x的一次函数,根据函数的增减性,结合自变量x的取值范围再确定当x取何值时,利润y最大【解答】解:(1)y0.3x+0.4(2500x)0.1x+1000 因此y与x之间的函数表达式为:y0.1x+1000 (2)由题意得:1000x2500 又k0.10y随x的增大而减少当x1000时,y最大,此时2500x1500, 因此,生产甲产品1000吨,乙产品1500吨时,利润最大【点评】这是一道一次函数和不等式组综合应用题,准确地根据题目中数量之间的关系,求利润y与甲产品生产
34、的吨数x的函数表达式,然后再利用一次函数的增减性和自变量的取值范围,最后确定函数的最值也是常考内容之一24(10分)如图,海上观察哨所B位于观察哨所A正北方向,距离为25海里在某时刻,哨所A与哨所B同时发现一走私船,其位置C位于哨所A北偏东53的方向上,位于哨所B南偏东37的方向上(1)求观察哨所A与走私船所在的位置C的距离;(2)若观察哨所A发现走私船从C处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76的方向前去拦截,求缉私艇的速度为多少时,恰好在D处成功拦截(结果保留根号)(参考数据:sin37cos53,cos37sin53,tan37,tan764)【分析】(1)先根
35、据三角形内角和定理求出ACB90,再解RtABC,利用正弦函数定义得出AC即可;(2)过点C作CMAB于点M,易知,D、C、M在一条直线上解RtAMC,求出CM、AM解RtAMD中,求出DM、AD,得出CD设缉私艇的速度为x海里/小时,根据走私船行驶CD所用的时间等于缉私艇行驶AD所用的时间列出方程,解方程即可【解答】解:(1)在ABC中,ACB180BBAC180375390在RtABC中,sinB,ACABsin372515(海里)答:观察哨所A与走私船所在的位置C的距离为15海里;(2)过点C作CMAB于点M,由题意易知,D、C、M在一条直线上在RtAMC中,CMACsinCAM1512
36、,AMACcosCAM159在RtAMD中,tanDAM,DMAMtan769436,AD9,CDDMCM361224设缉私艇的速度为x海里/小时,则有,解得x6经检验,x6是原方程的解答:当缉私艇的速度为6海里/小时时,恰好在D处成功拦截【点评】此题考查了解直角三角形的应用方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想25(10分)如图,在平面直角坐标系xOy中,函数yx+b的图象与函数y(x0)的图象相交于点A(1,6),并与x轴交于点C点D是线段AC上一点,ODC与OAC的面积比为2:3(1)k6,b5;(2)求点D的坐标;(3)若将O
37、DC绕点O逆时针旋转,得到ODC,其中点D落在x轴负半轴上,判断点C是否落在函数y(x0)的图象上,并说明理由【分析】(1)将A(1,6)代入yx+b可求出b的值;将A(1,6)代入y可求出k的值;(2)过点D作DMx轴,垂足为M,过点A作ANx轴,垂足为N,由ODC与OAC的面积比为2:3,可推出,由点A的坐标可知AN6,进一步求出DM4,即为点D的纵坐标,把y4代入yx+5中,可求出点D坐标;(3)过点C作CGx轴,垂足为G,由题意可知,ODOD,由旋转可知SODCSODC,可求出CG,在RtOCG中,通过勾股定理求出OG的长度,即可写出点C的坐标,将其坐标代入y可知没有落在函数y(x0)
38、的图象上【解答】解:(1)将A(1,6)代入yx+b,得,61+b,b5,将A(1,6)代入y,得,6,k6,故答案为:6,5;(2)如图1,过点D作DMx轴,垂足为M,过点A作ANx轴,垂足为N,又点A的坐标为(1,6),AN6,DM4,即点D的纵坐标为4,把y4代入yx+5中,得,x1,D(1,4);(3)由题意可知,ODOD,如图2,过点C作CGx轴,垂足为G,SODCSODC,OCDMODCG,即54CG,CG,在RtOCG中,OG,C的坐标为(,),()6,点C不在函数y的图象上【点评】本题考查了待定系数法求解析式,三角形的面积,反比例函数的性质,勾股定理等,解题关键是能够熟练运用反
39、比例函数的性质26(12分)如图,在平面直角坐标系xOy中,抛物线L1:yx2+bx+c过点C(0,3),与抛物线L2:yx2x+2的一个交点为A,且点A的横坐标为2,点P、Q分别是抛物线L1、L2上的动点(1)求抛物线L1对应的函数表达式;(2)若以点A、C、P、Q为顶点的四边形恰为平行四边形,求出点P的坐标;(3)设点R为抛物线L1上另一个动点,且CA平分PCR若OQPR,求出点Q的坐标【分析】(1)先求出A点的坐标,再用待定系数法求出函数解析式便可;(2)设点P的坐标为(x,x22x3),分两种情况讨论:AC为平行四边形的一条边,AC为平行四边形的一条对角线,用x表示出Q点坐标,再把Q点
40、坐标代入抛物线L2:yx2x+2中,列出方程求得解便可;(3)当点P在y轴左侧时,抛物线L1不存在点R使得CA平分PCR,当点P在y轴右侧时,不妨设点P在CA的上方,点R在CA的下方,过点P、R分别作y轴的垂线,垂足分别为S、T,过点P作PHTR于点H,设点P坐标为(x1,),点R坐标为(x2,),证明PSCRTC,由相似比得到x1+x24,进而得tanPRH的值,过点Q作QKx轴于点K,设点Q坐标为(m,),由tanQOKtanPRH,移出m的方程,求得m便可【解答】解:(1)将x2代入yx2x+2,得y3,故点A的坐标为(2,3),将A(2,1),C(0,3)代入yx2+bx+c,得,解得
41、,抛物线L1:yx22x3;(2)设点P的坐标为(x,x22x3),第一种情况:AC为平行四边形的一条边,当点Q在点P右侧时,则点Q的坐标为(x+2,2x3),将Q(x+2,2x3)代入yx2x+2,得2x3(x+2)2(x+2)+2,解得,x0或x1,因为x0时,点P与C重合,不符合题意,所以舍去,此时点P的坐标为(1,0);当点Q在点P左侧时,则点Q的坐标为(x2,x22x3),将Q(x2,x22x3)代入yx2x+2,得yx2x+2,得x22x3(x2)2(x2)+2,解得,x3,或x,此时点P的坐标为(3,0)或(,);第二种情况:当AC为平行四边形的一条对角线时,由AC的中点坐标为(1,3),得PQ的中点坐标为(1,3),故点Q的坐标为(2x,x2+2x3),将Q(2x,x2+2x3)代入yx2x+2,得x2+2x3(2x)2(2x)+2,解得,x0或x3,因为x0时,点P与点C重合,不符合题意,所以舍去,此时点P的坐标为(3,12),综上所述,点P的坐标为(1,0)或(3,0)或(,)或(3,12);(3)当点P在y轴左侧时,抛物线L1不存在点R使得CA平分PCR,当点P在y轴右侧时,不妨设点P在CA的上方,点R在CA的下方,过点P、R分别作y轴的垂线,垂足分别为S、T,过点P作PHTR于