《2022年新北师大版八年级数学上册第四章一次函数知识点总结和典型例题分析 .pdf》由会员分享,可在线阅读,更多相关《2022年新北师大版八年级数学上册第四章一次函数知识点总结和典型例题分析 .pdf(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、学习必备欢迎下载新北师大版八年级数学上册第四章一次函数一、函数1、函数的概念(重点)一般的,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有一个唯一的值与它对应,那么我们就称y是x的函数,其中x是自变量,y是因变量。理解函数的关键四点:(1)有两个变量; (2)一个变量变化,另一个随之变化;(3)对于自变量x每一个确定的值,函数y有且仅有一个值与之对应; (4)函数不是数,是过程中x、y的变量关系。2、函数的三种表示方法(难点)(1)列表法(2)关系式法(3)图像法3、函数的值及自变量的取值范围(重点)(1)对于自变量在取值范围内的一个确定的值a,函数有唯一确定的对应
2、值,称为自变量等于a时的函数值。(2)使得函数有意义的自变量的全体取值,叫做自变量的取值范围。确定自变量取值范围两点:一是必须使含有自变量的代数式有意义,二是必须满足实际问题的意义。二、一次函数与正比例函数1、一次函数的概念(重点)若两个变量x、y间的对应关系可以表示成ykxb(k、b为常数,0k)的形式,则成y是x的一次函数。2、正比例函数的概念(重点)对于一次函数ykxb(0k) ,当0b时,变为ykx,这是把y叫做x的正比例函数。3、根据条件列一次函数的关系式(难点)认真分析,探究实际问题中的有关信息,再次基础上建立数学模型,从而解决问题。步骤:(1)认真分析,理解题意;(2)找出等量关
3、系;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 7 页学习必备欢迎下载(3)写出一次函数关系式;(4)确定自变量的取值范围,实际问题实际分析。三、一次函数的图像1、函数的图像(重点)把一个函数的自变量的值和与之对应的函数值分别作为点的横坐标和纵坐标,在直角坐标系中描出相应的点,所有这些点组成的图形就叫做函数的图象。注:一次函数的图像是一条直线,所以只需描出两个点即可画出图象。2、正比例函数,(0)ykx k的图像和性质(重点)(1)正比例函数,(0)ykx k的图像是经过(0,0)、(1, )k两点的直线。(2)当0k时,图象经过一
4、三象限,且y随x的增大而增大;当0k时,图象经过二四象限,且y随x的增大而减小。3、一次函数图象的特点及性质(重点)一次函数,(0)ykxb k的图像和性质:k 的符号b 的符号函数图像图像特征k0 b0 图像经过一、二、三象限,y 随 x的增大而增大。b0 图像经过一、三、四象限,y 随 x的增大而增大。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 7 页学习必备欢迎下载K0 图像经过一、二、四象限,y 随 x的增大而减小b0 图像经过二、三、四象限,y 随 x的增大而减小。注:当 b=0 时,一次函数变为正比例函数,正比例函数是一
5、次函数的特例。特点:一次函数,(0)ykxb k的图像是一条直线,因此作函数图象时,只需要确定两个点,即可连接两点做出函数图象,函数图象也成直线ykxb。性质:(1)图象经过(0, )b点。当0k时,y随x增大而增大,当0k时,y随x增大而减小。(2)当0k,0b时,图象经过一二三象限;当0k,0b时,图象经过一三四象限;当0k,0b时,图象经过一二四象限;当0k,0b时,图象经过二三四象限;(3)两条直线位置关系:当k相等,b不等时,两直线平行;当k相等,b相等时,两直线重合;当k不等时,两直线相交;当k不等,b相等时,两直线相交于y轴;四、一次函数的应用1、确定正比例函数的表达式(重点)正
6、比例函数ykx只有一个待定系数k,只需要除原点(0,0)之外的任意一点的坐标,即可求出k值,进而精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 7 页学习必备欢迎下载求出函数表达式。注:一次函数的图像是一条直线,所以只需描出两个点即可画出图象。2、用待定系数法确定一次函数的表达式(难点)一次函数,(0)ykxb k有两个待定系数k和b,所以只需求出二者的值,即可求出函数表达式。待定系数法:首先设函数ykxb;其次将两个已知点的坐标带人表达式,列出k、b的方程;最后求解方程。3、一次函数与一元一次方程的关系(重难点)(1)从“数”的方面看
7、:一次函数ykxb函数值为某一数值时,自变量x的值即为方程的解。(2)从“形”的方面看:函数与x轴的交点的横坐标即为方程0kxb的解。4、利用图象信息解决实际问题(重难点)两方面分析图象:(1)根据函数图象可判断函数类型,注意特殊的点(2)从x轴、y轴的实际意义去理解函数图象上的点的坐标的实际意义类型一:正比例函数与一次函数定义1、当 m 为何值时,函数28(3)(4)mymxm是一次函数?举一反三:【变式 1】如果函数3(2)myxm是正比例函数,那么(). Am=4 或 m=2 Bm=4 Cm=1 Dm=2 【变式 2】已知 y-3 与 x 成正比例,且x=2 时, y=7.( 1)写出
8、y 与 x 之间的函数关系式; (2)当 x=4 时,求 y 的值; ( 3)当 y=4 时,求 x 的值类型二:待定系数法求函数解析式2、求图象经过点(2,-1) ,且与直线y=2x+1 平行的一次函数的表达式举一反三:【变式 1】已知弹簧的长度y(cm)在一定的弹性限度内是所挂重物的质量x(kg)的一次函数,现已测得不挂重物时,弹簧的长度为6cm,挂 4kg 的重物时,弹簧的长度是7.2cm,求这个一次函数的表达式【变式 2】已知直线y=2x+1(1)求已知直线与y 轴交点 M 的坐标;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共
9、 7 页学习必备欢迎下载(2)若直线y=kx+b 与已知直线关于y 轴对称,求k,b 的值【变式 3】判断三点A(3,1) ,B(0,-2) ,C(4, 2)是否在同一条直线上类型三:函数图象的应用3、图中的图象(折线ABCDE )描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s(km)和行驶时间 t(h)之间的函数关系,根据图中提供的信息,回答下列问题:(1)汽车共行驶了_km;(2)汽车在行驶途中停留了_h;(3)汽车在整个行驶过程中的平均速度为_km/h ;(4)汽车自出发后3h 至 4.5h 之间行驶的方向是_. 举一反三:【变式 1】 图中,射线 l 甲、l 乙分别表示甲、
10、 乙两运动员在自行车比赛中所走的路程s与时间 t 的函数关系,求它们行进的速度关系。【变式 2】小高从家骑自行车去学校上学,先走上坡路到达点A,再走下坡路到达点B,最后走平路到达学校,所用的时间与路程的关系如图所示。放学后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,那么他从学校到家需要的时间是()A.14 分钟B.17 分钟C.18 分钟D.20 分钟【变式3】某种洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续的过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如图所示:根据图象解答下列问题:(1)洗衣机的进水时间是多少分钟?清
11、洗时洗衣机中的水量是多少升?精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 7 页学习必备欢迎下载(2)已知洗衣机的排水速度为每分钟19 升.求排水时y 与 x 之间的关系式;如果排水时间为2 分钟,求排水结束时洗衣机中剩下的水量. 类型四:一次函数的性质4、己知一次函数y=kx 十 b 的图象交x 轴于点 A(一 6,0) ,交 y 轴于点 B,且 AOB 的面积为12,y 随 x的增大而增大,求k, b 的值举一反三:【变式 1】已知关于x 的一次函数2(3)218ym xm(1)m 为何值时,函数的图象经过原点?(2)m 为何值时
12、,函数的图象经过点(0, 2)?(3)m 为何值时,函数的图象和直线y=x 平行?(4)m 为何值时, y 随 x 的增大而减小?【变式 2】函数ykxk在直角坐标系中的图象可能是()类型五:一次函数综合5、已知:如图,平面直角坐标系中,A(1,0) ,B(0,1) ,C(-1,0) ,过点 C 的直线绕C 旋转,交y 轴于点 D,交线段 AB 于点 E。(1)求 OAB 的度数及直线AB 的解析式;(2)若 OCD 与 BDE 的面积相等,求直线 CE 的解析式;若y 轴上的一点P 满足 APE=45 ,请直接写出点P的坐标。精选学习资料 - - - - - - - - - 名师归纳总结 -
13、 - - - - - -第 6 页,共 7 页学习必备欢迎下载举一反三:【变式 1】在长方形ABCD 中,AB=3cm ,BC=4cm ,点 P沿边按 ABC D 的方向向点D 运动(但不与A,D 两点重合)。求 APD 的面积 y(cm2)与点 P 所行的路程x(cm)之间的函数关系式及自变量的取值范围。【变式 2】如图, 直线6ykx与 x 轴 y 轴分别交于点E、F,点 E 的坐标为 (-8,0) ,点 A 的坐标为 (-6,0) 。(1)求 k 的值;(2)若点 P( x,y)是第二象限内的直线上的一个动点,在点P的运动过程中,试写出OPA 的面积 S与x 的函数关系式,并写出自变量x 的取值范围;(3)探究:在(2)的条件下,当点P运动到什么位置时,OPA 的面积为27/8,并说明理由。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 7 页