《2022年高考数学大题的解题技巧.docx》由会员分享,可在线阅读,更多相关《2022年高考数学大题的解题技巧.docx(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022年高考数学大题的解题技巧 大题是高考数学科目的重要组成部分,也是比分占得很重的一部分,考生须要驾驭解题技巧,才能正确答题,那么接下来给大家共享一些关于高考数学大题的解题技巧,希望对大家有所帮助。 高考数学大题的解题技巧 一、三角函数题 留意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很简单因为马虎,导致错误!一着不慎,满盘皆输!)。 二、数列题 1、证明一个数列是等差(等比)数列时,最终下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列; 2、最终一问证明不等式成立时,假如一端是常数,另一端是含有n的式子时,一般
2、考虑用放缩法;假如两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,肯定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时肯定写上综上:由得证; 3、证明不等式时,有时构造函数,利用函数单调性很简洁(所以要有构造函数的意识)。 三、立体几何题 1、证明线面位置关系,一般不须要去建系,更简洁; 2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系; 3、留意向量所成的角的余弦值(范围)与所求角的
3、余弦值(范围)的关系(符号问题、钝角、锐角问题)。 四、概率问题 1、搞清随机试验包含的全部基本领件和所求事务包含的基本领件的个数; 2、搞清是什么概率模型,套用哪个公式; 3、记准均值、方差、标准差公式; 4、求概率时,正难则反(依据p1+p2+.+pn=1); 5、留意计数时利用列举、树图等基本方法; 6、留意放回抽样,不放回抽样; 7、留意“零散的”的学问点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透; 8、留意条件概率公式; 9、留意平均分组、不完全平均分组问题。 五、圆锥曲线问题 1、留意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有干脆法、定义
4、法、交轨法、参数法、待定系数法; 2、留意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);留意判别式;留意韦达定理;留意弦长公式;留意自变量的取值范围等等; 3、战术上整体思路要保7分,争9分,想12分。 六、导数、极值、最值、不等式恒成立(或逆用求参)问题 1、先求函数的定义域,正确求出导数,特殊是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号); 2、留意最终一问有应用前面结论的意识; 3、留意分论探讨的思想; 4、不等式问题有构造函数的意识; 5、恒成立问题(分别常数法
5、、利用函数图像与根的分布法、求函数最值法); 6、整体思路上保6分,争10分,想14分。 高考数学解题思路 1、函数与方程思想 函数思想是指运用运动改变的观点,分析和探讨数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解题时可利用转化思想进行函数与方程间的相互转化。 2、 数形结合思想 中学数学探讨的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是找寻问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此
6、建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。 3、特别与一般的思想 用这种思想解选择题有时特殊有效,这是因为一个命题在普遍意义上成立时,在其特别状况下也必定成立,依据这一点,同学们可以干脆确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。 4、极限思想解题步骤 极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置干脆计算结果。 高考数学学习方法 1.学习的心态。 多数中等生的
7、数学成果是很有希望提升。一方面是目前具备了肯定基础,加上努力仔细,这种学生看法没有问题,只是缺少方向和适合的方法而已。另一方面,备考时间还算足够,还有时间进行调整和优化。所以平日里多给自己一些主动的心里示意,坚持不断地实践合适自己的学习方法。 2.备考的方向。 什么是备考方向?所谓备考方向就是考试方向。在平常做题的时候,要弄明白,你面前的题是哪个学问框架下,那种类型的题型,做这样类型的题有什么样的方法,这一类的题型有哪些?等等。 题型和学问点都是有限的,只要我们依据常考的题型,找寻解题思路并合理的训练,那么很简单提升自己的数学成果。 3.训练的方式。 每个人实际的状况不一样,训练的方式也不不同
8、,考试中取得的好成果都是考前合理训练的结果。许多学生埋怨时间不足,每天做完作业以后,身心乏累。面对一堆题目,特殊是数学题,可以注意以下几个角度: (1)弄清晰自己的须要。例如拿到老师布置的作业,无论是试卷还是课本习题,假如带着心情做,那么效果确定不好。首先要弄清自己的须要,比如这些题目中哪些题目质量好?哪些是你还没有弄懂的?哪些是以前常出现的?哪些是你确定会做的等等,你最想解决哪题? (2)制定目标。假如应付老师来做题无疑导致做题质量不高,那么在做题之前应当制定肯定目标,如上面说的那样,你通过哪些题目来训练正确率?通过哪些题目来练习速度?通过哪些题目来完善步骤等等。有了目标,更好的实现目标,在这个过程中,你确定有许多收获。 高考数学大题的解题技巧第6页 共6页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页