《2022年高一数学上册知识点.docx》由会员分享,可在线阅读,更多相关《2022年高一数学上册知识点.docx(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022年高一数学上册知识点 学习须要制定具体的安排,安排本身对大家有较强的约束和督促作用,安排对学习既有指导作用,又有推动作用。制定好的学习安排,是提高工作效率的重要手段。下面是我给大家整理的一些高一数学的学问点,希望对大家有所帮助。 高一上册数学必修一学问点梳理 函数的性质 函数的单调性(局部性质) (1)增函数 设函数y=f(x)的定义域为I,假如对于定义域I内的某个区间D内的随意两个自变量x1,x2,当x1 假如对于区间D上的随意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间. 留意:函数的单调性是函数的局部性质;
2、(2)图象的特点 假如函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的. (3).函数单调区间与单调性的判定方法 (A)定义法: (1)任取x1,x2D,且x1 (2)作差f(x1)-f(x2);或者做商 (3)变形(通常是因式分解和配方); (4)定号(即推断差f(x1)-f(x2)的正负); (5)下结论(指出函数f(x)在给定的区间D上的单调性). (B)图象法(从图象上看升降) (C)复合函数的单调性 复合函数fg(x)的单调性与构成它的函数u=g(x),y=f(u
3、)的单调性亲密相关,其规律:“同增异减” 留意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集. 函数的奇偶性(整体性质) (1)偶函数:一般地,对于函数f(x)的定义域内的随意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数. (2)奇函数:一般地,对于函数f(x)的定义域内的随意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数. (3)具有奇偶性的函数的图象的特征:偶函数的图象关于y轴对称;奇函数的图象关于原点对称. 高一数学必修五学问点总结 公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d. 公差为d的等差数列,各项同
4、乘以常数k所得数列仍是等差数列,其公差为kd. 若a、b为等差数列,则ab与ka+b(k、b为非零常数)也是等差数列. 对任何m、n,在等差数列a中有:a=a+(n-m)d,特殊地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性. 、一般地,假如l,k,p,m,n,r,皆为自然数,且l+k+p+=m+n+r+(两边的自然数个数相等),那么当a为等差数列时,有:a+a+a+=a+a+a+. 公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差). 假如a是等差数列,公差为d,那么,a,a,a、a也是等差数列,其公差为
5、-d;在等差数列a中,a-a=a-a=md.(其中m、k、) 在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项. 当公差d0时,等差数列中的数随项数的增大而增大;当d0时,等差数列中的数随项数的削减而减小;d=0时,等差数列中的数等于一个常数. 设a,a,a为等差数列中的三项,且a与a,a与a的项距差之比=(-1),则a=. 数列a为等差数列的充要条件是:数列a的前n项和S可以写成S=an+bn的形式(其中a、b为常数). 在等差数列a中,当项数为2n(nN)时,S-S=nd,=;当项数为(2n-1)(n)时,S-S=a,=. 若数列a为等差数列,则S,S-S,S-
6、S,仍旧成等差数列,公差为. 若两个等差数列a、b的前n项和分别是S、T(n为奇数),则=. 在等差数列a中,S=a,S=b(nm),则S=(a-b). 等差数列a中,是n的一次函数,且点(n,)均在直线y=x+(a-)上. 记等差数列a的前n项和为S.若a0,公差d0,则当a0且a0时,S;若a0,公差d0,则当a0且a0时,S最小. 高一数学学习方法 1、培育良好的学习习惯。 (1)制定安排明确学习目的。合理的学习安排是推动我们主动学习和克服困难的内在动力。安排先由老师指导督促,再肯定要由自己切实完成,既有长远准备,又有短期支配,执行过程中严格要求自己,磨炼学习意志。 (2)课前预习是取得
7、较好学习效果的基础。课前预习不仅能培育自学实力,而且能提高学习新课的爱好,驾驭学习的主动权。预习不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上。 (3)上课是理解和驾驭基本学问、基本技能和基本方法的关键环节。学然后知不足,上课更能用心听重点难点,把老师补充的内容记录下来,而不是全抄全录,顾此失彼。 (4)刚好复习是提高效率学习的重要一环。通过反复阅读教材,多方面查阅有关资料,强化对基本概念学问体系的理解与记忆,将所学的新学问与有关旧学问联系起来,进行分析比效,一边复习一边将复习成果整理在笔记本上,使对所学的新学问由懂到会。 (
8、5)独立作业是通过自己的独立思索,敏捷地分析问题、解决问题,进一步加深对所学新学问的理解和对新技能的驾驭过程。这一过程也是对我们意志毅力的考验,通过运用使我们对所学学问由会到熟。 (6)解决疑难是指对独立完成作业过程中暴露出来对学问理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难肯定要有锲而不舍的精神。做错的作业再做一遍。对错误的地方没弄清晰要反复思索。实在解决不了的要请教老师和同学,并要常常把易错的地方拿来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的学问,长期坚持使对所学学问由熟到活。 (7)系统小结是通过主动思索,达到全面系统深刻地驾
9、驭学问和发展相识实力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与资料,通过分析、综合、类比、概括,揭示学问间的内在联系,以达到对所学学问融会贯穿的目的。常常进行多层次小结,能对所学学问由活到悟。 (8)课外学习包括阅读课外书籍与报刊,参与学科竞赛与讲座,走访高年级同学或老师沟通学习心得等。课外学习是课内学习的补充和接着,它不仅能丰富同学们的文化科学学问,加深和巩固课内所学的学问,而且能够满意和发展我们的爱好爱好,培育独立学习和工作的实力,激发求知欲与学习热忱。 高一数学上册学问点第6页 共6页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页